283 lines
12 KiB
C#
Raw Permalink Normal View History

using System;
using ANX.Framework.NonXNA.Development;
// This file is part of the ANX.Framework created by the
// "ANX.Framework developer group" and released under the Ms-PL license.
// For details see: http://anxframework.codeplex.com/license
namespace ANX.Framework
{
#if !WINDOWSMETRO // TODO: find replacement for Win8!
[Serializable]
#endif
[PercentageComplete(100)]
[Developer("floAr")]
[TestState(TestStateAttribute.TestState.Tested)]
2011-11-18 15:29:37 +00:00
public class Curve
{
public CurveLoopType PreLoop { get; set; }
public CurveLoopType PostLoop { get; set; }
public CurveKeyCollection Keys { get; private set; }
2011-11-19 01:15:38 +00:00
public bool IsConstant
2011-11-18 15:29:37 +00:00
{
get { return Keys.Count <= 1; }
2011-11-18 15:29:37 +00:00
}
2011-11-19 01:15:38 +00:00
public Curve()
2011-11-18 15:29:37 +00:00
{
Keys = new CurveKeyCollection();
2011-11-18 15:29:37 +00:00
}
2011-11-19 01:15:38 +00:00
public Curve Clone()
2011-11-18 15:29:37 +00:00
{
return new Curve { Keys = Keys.Clone(), PreLoop = PreLoop, PostLoop = PostLoop };
2011-11-18 15:29:37 +00:00
}
2011-11-19 01:15:38 +00:00
#region ComputeTangent
2011-11-19 01:15:38 +00:00
//formulas from: http://msdn.microsoft.com/de-de/library/microsoft.xna.framework.curvetangent%28v=xnagamestudio.40%29.aspx
public void ComputeTangent(int index, CurveTangent tangentInOutType)
2011-11-18 15:29:37 +00:00
{
if (index < 0 || index >= Keys.Count)
2011-11-19 01:15:38 +00:00
{
throw new ArgumentOutOfRangeException();
}
CurveKey prev = index > 0 ? this.Keys[index - 1] : this.Keys[index];
CurveKey current = this.Keys[index];
2011-11-19 01:15:38 +00:00
current.TangentIn = 0;
CurveKey next = index < this.Keys.Count - 1 ? this.Keys[index + 1] : this.Keys[index];
2011-11-19 01:15:38 +00:00
switch (tangentInOutType)
{
case CurveTangent.Flat:
current.TangentIn = 0;
current.TangentOut = 0;
break;
case CurveTangent.Linear:
current.TangentIn = current.Value - prev.Value;
current.TangentOut = next.Value - current.Value;
break;
case CurveTangent.Smooth:
current.TangentIn = ((next.Value - prev.Value) * ((current.Position - prev.Position) / (next.Position - prev.Position)));
current.TangentOut = ((next.Value - prev.Value) * ((next.Position - current.Position) / (next.Position - prev.Position)));
break;
}
2011-11-18 15:29:37 +00:00
}
public void ComputeTangent(int index, CurveTangent tangentInType, CurveTangent tangentOutType)
2011-11-19 01:15:38 +00:00
{
if (index < 0 || index >= Keys.Count)
2011-11-19 01:15:38 +00:00
{
throw new ArgumentOutOfRangeException();
}
2011-11-18 15:34:40 +00:00
CurveKey prev = index > 0 ? this.Keys[index - 1] : this.Keys[index];
CurveKey current = this.Keys[index];
2011-11-19 01:15:38 +00:00
current.TangentIn = 0;
CurveKey next = index < this.Keys.Count - 1 ? this.Keys[index + 1] : this.Keys[index];
2011-11-19 01:15:38 +00:00
switch (tangentInType)
{
case CurveTangent.Flat:
current.TangentIn = 0;
break;
case CurveTangent.Linear:
current.TangentIn = current.Value - prev.Value;
break;
case CurveTangent.Smooth:
current.TangentIn = ((next.Value - prev.Value) * ((current.Position - prev.Position) / (next.Position - prev.Position)));
2011-11-19 01:15:38 +00:00
break;
}
switch (tangentOutType)
{
case CurveTangent.Flat:
current.TangentOut = 0;
break;
case CurveTangent.Linear:
current.TangentOut = next.Value - current.Value;
break;
case CurveTangent.Smooth:
current.TangentOut = ((next.Value - prev.Value) * ((next.Position - current.Position) / (next.Position - prev.Position)));
2011-11-19 01:15:38 +00:00
break;
}
}
2011-11-19 01:15:38 +00:00
public void ComputeTangents(CurveTangent tangentInOutType)
2011-11-18 15:34:40 +00:00
{
for (int i = 0; i < this.Keys.Count; ++i)
2011-11-18 15:34:40 +00:00
{
2011-11-19 01:15:38 +00:00
this.ComputeTangent(i, tangentInOutType);
}
}
2011-11-19 01:15:38 +00:00
public void ComputeTangents(CurveTangent tangentInType, CurveTangent tangentOutType)
{
for (int i = 0; i < this.Keys.Count; ++i)
2011-11-19 01:15:38 +00:00
{
this.ComputeTangent(i, tangentInType, tangentOutType);
2011-11-18 15:34:40 +00:00
}
}
2011-11-19 01:15:38 +00:00
#endregion
public float Evaluate(float position)
2011-11-18 15:34:40 +00:00
{
if (Keys.Count == 0)
return 0f;
2011-11-19 01:15:38 +00:00
if (Keys.Count == 1)
return Keys[0].Value;
2011-11-19 01:15:38 +00:00
CurveKey firstPointOfCurve = Keys[0];
CurveKey lastPointOfCurve = Keys[Keys.Count - 1];
if (position < firstPointOfCurve.Position)
return EvalualtePreLoop(firstPointOfCurve, lastPointOfCurve, position);
if (position > lastPointOfCurve.Position)
return EvalualtePostLoop(firstPointOfCurve, lastPointOfCurve, position);
return Interpolate(position);
}
2011-11-19 01:15:38 +00:00
#region EvalualtePreLoop
private float EvalualtePreLoop(CurveKey first, CurveKey last, float position)
{
int wraps;
float firstPosition = first.Position;
float lastPosition = last.Position;
// tspan is min 1 to avoid deadlock at constant curves
float timeSpan = Math.Max(1, lastPosition - firstPosition);
// Description from : http://msdn.microsoft.com/en-us/library/microsoft.xna.framework.curvelooptype.aspx
switch (PreLoop)
{
case CurveLoopType.Constant:
// The Curve will evaluate to its first key for positions before the first point in the Curve and to
// the last key for positions after the last point.
return first.Value;
case CurveLoopType.Linear:
// Linear interpolation will be performed to determine the value.
return first.Value - first.TangentIn * (first.Position - position);
case CurveLoopType.Cycle:
// Positions specified past the ends of the curve will wrap around to the opposite side of the Curve.
position -= timeSpan * CountWraps(position);
return Interpolate(position);
case CurveLoopType.CycleOffset:
// Positions specified past the ends of the curv will wrap around to the opposite side of the Curve.
// The value will be offset by the difference between the values of the first and last CurveKey
// multiplied by the number of times the position wraps around. If the position is before the first
// point in the Curve, the difference will be subtracted from its value; otherwise, the difference
// will be added
wraps = CountWraps(position);
float difference = (last.Value - first.Value) * wraps;
position -= timeSpan * CountWraps(position);
return Interpolate(position) + difference;
case CurveLoopType.Oscillate:
// Positions specified past the ends of the Curve act as an offset from the same side of the Curve
// toward the opposite side.
wraps = CountWraps(position);
float offset = position - (first.Position + wraps * timeSpan);
float wrappedPosition = (wraps & 1) != 0 ? (last.Position - offset) : (first.Position + offset);
return Interpolate(wrappedPosition);
}
return Interpolate(position);
}
#endregion
2011-11-19 01:15:38 +00:00
#region EvalualtePostLoop
private float EvalualtePostLoop(CurveKey first, CurveKey last, float position)
{
int wraps;
float firstPosition = first.Position;
float lastPosition = last.Position;
//tspan is min 1 to avoid deadlock at constant curves
float timeSpan = Math.Max(1, lastPosition - firstPosition);
switch (PostLoop)
2011-11-19 01:15:38 +00:00
{
case CurveLoopType.Constant:
// The Curve will evaluate to its first key for positions before the first point in the Curve and to
// the last key for positions after the last point.
return last.Value;
case CurveLoopType.Linear:
// Linear interpolation will be performed to determine the value.
return last.Value - last.TangentOut * (last.Position - position);
case CurveLoopType.Cycle:
// Positions specified past the ends of the curve will wrap around to the opposite side of the Curve.
position -= timeSpan * CountWraps(position);
return Interpolate(position);
case CurveLoopType.CycleOffset:
// Positions specified past the ends of the curve will wrap around to the opposite side of the Curve.
// The value will be offset by the difference between the values of the first and last CurveKey
// multiplied by the number of times the position wraps around. If the position is before the first
// point in the Curve, the difference will be subtracted from its value; otherwise, the difference
// will be added.
wraps = CountWraps(position);
float difference = (last.Value - first.Value) * wraps;
position -= timeSpan * CountWraps(position);
return Interpolate(position) + difference;
case CurveLoopType.Oscillate:
// Positions specified past the ends of the Curve act as an offset from the same side of the Curve
// toward the opposite side.
wraps = CountWraps(position);
float offset = position - (first.Position + wraps * timeSpan);
float wrappedPosition = (wraps & 1) != 0 ? (last.Position - offset) : (first.Position + offset);
return Interpolate(wrappedPosition);
2011-11-19 01:15:38 +00:00
}
return Interpolate(position);
}
#endregion
private int CountWraps(float position)
{
float timeRange = Keys[Keys.Count - 1].Position - Keys[0].Position;
float wraps = (position - Keys[0].Position) / timeRange;
if (wraps < 0)
wraps--;
return (int)wraps;
}
2011-11-19 01:15:38 +00:00
private float Interpolate(float position)
2011-11-19 01:15:38 +00:00
{
//interpolate inside the curve with cubic hermite: http://forums.create.msdn.com/forums/p/53392/323814.aspx
2011-11-19 01:15:38 +00:00
//assume position is inside curve
CurveKey a = Keys[0];
2011-11-19 01:15:38 +00:00
CurveKey b;
for (int nextKeyIndex = 1; nextKeyIndex < Keys.Count; nextKeyIndex++)
2011-11-19 01:15:38 +00:00
{
b = Keys[nextKeyIndex];
2011-11-19 01:15:38 +00:00
if (b.Position >= position)
{
//stepping
if (a.Continuity == CurveContinuity.Step)
return position == b.Position ? b.Value : a.Value;
2011-11-19 01:15:38 +00:00
//smooth
//get the location between a and b in [0,1]
float moment = (position - a.Position) / (b.Position - a.Position);
return MathHelper.Hermite(a.Value, a.TangentOut, b.Value, b.TangentOut, moment);
2011-11-19 01:15:38 +00:00
}
//get next pair
a = b;
}
return 0f;
2011-11-18 15:34:40 +00:00
}
2011-11-18 15:29:37 +00:00
}
}