1
0
mirror of https://github.com/borgesdan/xn65 synced 2024-12-29 21:54:47 +01:00
xn65/includes/xna/common/math.hpp
2024-11-10 21:18:02 -03:00

72 lines
3.0 KiB
C++

#ifndef XNA_COMMON_MATH_HPP
#define XNA_COMMON_MATH_HPP
#include <limits>
#include <cmath>
#include <algorithm>
namespace xna {
//Contains commonly used precalculated values.
struct MathHelper {
//Represents the mathematical constant e.
static constexpr double E = 2.7182818284590451;
//Represents the value of pi.
static constexpr double PI = 3.1415926535897931;
//Converts degrees to radians.
static constexpr float ToRadians(float degrees) { return degrees * (static_cast<float>(PI) / 180.0f); }
//Converts radians to degrees.
static constexpr float ToDegrees(float radians) { return radians * 57.2957764F; }
//Calculates the absolute value of the difference of two values
static float Distance(float value1, float value2) { return std::abs(value1 - value2); }
//Returns the lesser of two values.
static constexpr float Min(float value1, float value2) { return (std::min)(value1, value2); }
//Returns the greater of two values.
static constexpr float Max(float value1, float value2) { return (std::max)(value1, value2); }
//Restricts a value to be within a specified range.
template <typename T>
static constexpr T Clamp(T value, T min, T max) {
value = value > max ? max : value;
value = value < min ? min : value;
return value;
}
//Linearly interpolates between two values.
static constexpr float Lerp(float value1, float value2, float amount) {
return value1 + (value2 - value1) * amount;
}
//Returns the Cartesian coordinate for one axis of a point that is defined by a given triangle and two normalized barycentric (areal) coordinates.
static constexpr float Barycentric(float value1, float value2, float value3, float amount1, float amount2) {
return value1 + amount1 * (value2 - value1) + amount2 * (value3 - value1);
}
//Interpolates between two values using a cubic equation.
static constexpr float SmoothStep(float value1, float value2, float amount) {
const auto num = Clamp(amount, 0.0f, 1.0f);
return Lerp(value1, value2, (num * num * (3.0F - 2.0F * num)));
}
//Performs a Catmull-Rom interpolation using the specified positions.
static constexpr float CatmullRom(float value1, float value2, float value3, float value4, float amount) {
const auto num1 = amount * amount;
const auto num2 = amount * num1;
return (0.5F * (2.0F * value2 + (-value1 + value3) * amount + (2.0F * value1 - 5.0F * value2 + 4.0F * value3 - value4) * num1 + (-value1 + 3.0F * value2 - 3.0F * value3 + value4) * num2));
}
//Performs a Hermite spline interpolation.
static constexpr float Hermite(float value1, float tangent1, float value2, float tangent2, float amount) {
const auto num1 = amount;
const auto num2 = num1 * num1;
const auto num3 = num1 * num2;
const auto num4 = (2.0F * num3 - 3.0F * num2 + 1.0F);
const auto num5 = (-2.0F * num3 + 3.0F * num2);
const auto num6 = num3 - 2.0f * num2 + num1;
const auto num7 = num3 - num2;
return value1 * num4 + value2 * num5 + tangent1 * num6 + tangent2 * num7;
}
};
}
#endif