#include "common/quaternion.hpp" #include "common/matrix.hpp" namespace xna { Quaternion Quaternion::CreateFromAxisAngle(Vector3 const& axis, float angle) { const auto num1 = angle * 0.5f; const auto num2 = std::sin(num1); const auto num3 = std::cos(num1); Quaternion fromAxisAngle; fromAxisAngle.X = axis.X * num2; fromAxisAngle.Y = axis.Y * num2; fromAxisAngle.Z = axis.Z * num2; fromAxisAngle.W = num3; return fromAxisAngle; } Quaternion Quaternion::CreateFromYawPitchRoll(float yaw, float pitch, float roll) { const auto num1 = roll * 0.5f; const auto num2 = std::sin(num1); const auto num3 = std::cos(num1); const auto num4 = pitch * 0.5f; const auto num5 = std::sin(num4); const auto num6 = std::cos(num4); const auto num7 = yaw * 0.5f; const auto num8 = std::sin(num7); const auto num9 = std::cos(num7); Quaternion fromYawPitchRoll; fromYawPitchRoll.X = (num9 * num5 * num3 + num8 * num6 * num2); fromYawPitchRoll.Y = (num8 * num6 * num3 - num9 * num5 * num2); fromYawPitchRoll.Z = (num9 * num6 * num2 - num8 * num5 * num3); fromYawPitchRoll.W = (num9 * num6 * num3 + num8 * num5 * num2); return fromYawPitchRoll; } Quaternion Quaternion::CreateFromRotationMatrix(Matrix const& matrix) { const auto num1 = matrix.M11 + matrix.M22 + matrix.M33; Quaternion fromRotationMatrix; if (num1 > 0.0) { const auto num2 = std::sqrt(num1 + 1.0F); fromRotationMatrix.W = num2 * 0.5f; const auto num3 = 0.5f / num2; fromRotationMatrix.X = (matrix.M23 - matrix.M32) * num3; fromRotationMatrix.Y = (matrix.M31 - matrix.M13) * num3; fromRotationMatrix.Z = (matrix.M12 - matrix.M21) * num3; } else if (matrix.M11 >= matrix.M22 && matrix.M11 >= matrix.M33) { const auto num4 = std::sqrt(1.0F + matrix.M11 - matrix.M22 - matrix.M33); const auto num5 = 0.5f / num4; fromRotationMatrix.X = 0.5f * num4; fromRotationMatrix.Y = (matrix.M12 + matrix.M21) * num5; fromRotationMatrix.Z = (matrix.M13 + matrix.M31) * num5; fromRotationMatrix.W = (matrix.M23 - matrix.M32) * num5; } else if (matrix.M22 > matrix.M33) { const auto num6 = std::sqrt(1.0F + matrix.M22 - matrix.M11 - matrix.M33); const auto num7 = 0.5f / num6; fromRotationMatrix.X = (matrix.M21 + matrix.M12) * num7; fromRotationMatrix.Y = 0.5f * num6; fromRotationMatrix.Z = (matrix.M32 + matrix.M23) * num7; fromRotationMatrix.W = (matrix.M31 - matrix.M13) * num7; } else { const auto num8 = std::sqrt(1.0F + matrix.M33 - matrix.M11 - matrix.M22); const auto num9 = 0.5f / num8; fromRotationMatrix.X = (matrix.M31 + matrix.M13) * num9; fromRotationMatrix.Y = (matrix.M32 + matrix.M23) * num9; fromRotationMatrix.Z = 0.5f * num8; fromRotationMatrix.W = (matrix.M12 - matrix.M21) * num9; } return fromRotationMatrix; } Quaternion Quaternion::Slerp(Quaternion const& quaternion1, Quaternion const& quaternion2, float amount) { const auto num1 = amount; auto d = quaternion1.X * quaternion2.X + quaternion1.Y * quaternion2.Y + quaternion1.Z * quaternion2.Z + quaternion1.W * quaternion2.W; bool flag = false; if (d < 0.0) { flag = true; d = -d; } float num2 = 0; float num3 = 0; if (d > 0.99999898672103882) { num2 = 1.0f - num1; num3 = flag ? -num1 : num1; } else { const auto a = std::acos(d); const auto num4 = 1.0F / std::sin(a); num2 = std::sin((1.0F - num1) * a) * num4; num3 = flag ? -std::sin(num1 * a) * num4 : std::sin(num1 * a) * num4; } Quaternion quaternion; quaternion.X = num2 * quaternion1.X + num3 * quaternion2.X; quaternion.Y = num2 * quaternion1.Y + num3 * quaternion2.Y; quaternion.Z = num2 * quaternion1.Z + num3 * quaternion2.Z; quaternion.W = num2 * quaternion1.W + num3 * quaternion2.W; return quaternion; } Quaternion Quaternion::Lerp(Quaternion const& quaternion1, Quaternion const& quaternion2, float amount) { const auto num1 = amount; const auto num2 = 1.0f - num1; Quaternion quaternion; if (quaternion1.X * quaternion2.X + quaternion1.Y * quaternion2.Y + quaternion1.Z * quaternion2.Z + quaternion1.W * quaternion2.W >= 0.0) { quaternion.X = num2 * quaternion1.X + num1 * quaternion2.X; quaternion.Y = num2 * quaternion1.Y + num1 * quaternion2.Y; quaternion.Z = num2 * quaternion1.Z + num1 * quaternion2.Z; quaternion.W = num2 * quaternion1.W + num1 * quaternion2.W; } else { quaternion.X = num2 * quaternion1.X - num1 * quaternion2.X; quaternion.Y = num2 * quaternion1.Y - num1 * quaternion2.Y; quaternion.Z = num2 * quaternion1.Z - num1 * quaternion2.Z; quaternion.W = num2 * quaternion1.W - num1 * quaternion2.W; } const auto num3 = 1.0f / std::sqrt(quaternion.X * quaternion.X + quaternion.Y * quaternion.Y + quaternion.Z * quaternion.Z + quaternion.W * quaternion.W); quaternion.X *= num3; quaternion.Y *= num3; quaternion.Z *= num3; quaternion.W *= num3; return quaternion; } }