#include "xna/common/numerics.hpp" namespace xna { bool Vector2::Transform(Vector2 const* sourceArray, size_t sourceArrayLength, Matrix const& matrix, Vector2* destinationArray, size_t destinationArrayLength) { if (!sourceArray || !destinationArray || destinationArrayLength < sourceArrayLength) return false; for (size_t index = 0; index < sourceArrayLength; ++index) { const auto& source = sourceArray[index]; destinationArray[index].X = (source.X * matrix.M11 + source.Y * matrix.M21) + matrix.M41; destinationArray[index].Y = (source.X * matrix.M12 + source.Y * matrix.M22) + matrix.M42; } return true; } bool Vector2::Transform(std::vector sourceArray, Matrix const& matrix, std::vector& destinationArray) { if (destinationArray.empty()) destinationArray.resize(sourceArray.size()); return Transform(sourceArray.data(), sourceArray.size(), matrix, destinationArray.data(), destinationArray.size()); } bool Vector2::Transform(Vector2 const* sourceArray, size_t sourceArrayLength, size_t sourceIndex, Matrix const& matrix, Vector2* destinationArray, size_t destinationArrayLength, size_t destinationIndex, size_t length) { if (!sourceArray || !destinationArray || destinationArrayLength < sourceArrayLength || sourceArrayLength < sourceIndex + length || destinationArrayLength < destinationIndex + length) return false; for (size_t i = 0; i < length; ++i) { const auto& source = sourceArray[sourceIndex + i]; destinationArray[destinationIndex + i].X = (source.X * matrix.M11 + source.Y * matrix.M21) + matrix.M41; destinationArray[destinationIndex + i].Y = (source.X * matrix.M12 + source.Y * matrix.M22) + matrix.M42; } return true; } bool Vector2::Transform(std::vector const& sourceArray, size_t sourceIndex, Matrix const& matrix, std::vector& destinationArray, size_t destinationIndex, size_t length) { if (destinationArray.empty()) destinationArray.resize(sourceArray.size()); return Transform(sourceArray.data(), sourceArray.size(), sourceIndex, matrix, destinationArray.data(), destinationArray.size(), destinationIndex, length); } bool Vector2::TransformNormal(Vector2 const* sourceArray, size_t sourceArrayLength, Matrix const& matrix, Vector2* destinationArray, size_t destinationArrayLength) { if (!sourceArray || !destinationArray || destinationArrayLength < sourceArrayLength) return false; for (size_t index = 0; index < sourceArrayLength; ++index) { const auto& source = sourceArray[index]; destinationArray[index].X = source.X * matrix.M11 + source.Y * matrix.M21; destinationArray[index].Y = source.X * matrix.M12 + source.Y * matrix.M22; } return true; } bool Vector2::TransformNormal(std::vector const& sourceArray, Matrix const& matrix, std::vector& destinationArray) { if (destinationArray.empty()) destinationArray.resize(sourceArray.size()); return TransformNormal(sourceArray.data(), sourceArray.size(), matrix, destinationArray.data(), destinationArray.size()); } bool Vector2::TransformNormal(Vector2 const* sourceArray, size_t sourceArrayLength, size_t sourceIndex, Matrix const& matrix, Vector2* destinationArray, size_t destinationArrayLength, size_t destinationIndex, size_t length) { if (!sourceArray || !destinationArray || destinationArrayLength < sourceArrayLength || sourceArrayLength < sourceIndex + length || destinationArrayLength < destinationIndex + length) return false; for (size_t i = 0; i < length; ++i) { const auto& source = sourceArray[sourceIndex + i]; destinationArray[destinationIndex].X = (source.X * matrix.M11 + source.Y * matrix.M21); destinationArray[destinationIndex].Y = (source.X * matrix.M12 + source.Y * matrix.M22); } return true; } bool Vector2::TransformNormal(std::vector const& sourceArray, size_t sourceIndex, Matrix const& matrix, std::vector& destinationArray, size_t destinationIndex, size_t length) { if (destinationArray.empty()) destinationArray.resize(sourceArray.size()); return TransformNormal(sourceArray.data(), sourceArray.size(), sourceIndex, matrix, destinationArray.data(), destinationArray.size(), destinationIndex, length); } bool Vector2::Transform(Vector2 const* sourceArray, size_t sourceArrayLength, Quaternion const& rotation, Vector2* destinationArray, size_t destinationArrayLength) { if (!sourceArray || !destinationArray || destinationArrayLength < sourceArrayLength) return false; const auto rx = rotation.X + rotation.X; const auto ry = rotation.Y + rotation.Y; const auto rz = rotation.Z + rotation.Z; const auto rwz = rotation.W * rz; const auto rxx = rotation.X * rx; const auto rxy = rotation.X * ry; const auto ryy = rotation.Y * ry; const auto rzz = rotation.Z * rz; const auto a = 1.0f - ryy - rzz; const auto b = rxy - rwz; const auto c = rxy + rwz; const auto d = 1.0f - rxx - rzz; for (size_t index = 0; index < sourceArrayLength; ++index) { const auto& source = sourceArray[index]; destinationArray[index].X = source.X * a + source.Y * b; destinationArray[index].Y = source.X * c + source.Y * d; } return true; } bool Vector2::Transform(std::vector const& sourceArray, Quaternion const& rotation, std::vector& destinationArray) { if (destinationArray.empty()) destinationArray.resize(sourceArray.size()); return Transform(sourceArray.data(), sourceArray.size(), rotation, destinationArray.data(), destinationArray.size()); } bool Vector2::Transform(Vector2 const* sourceArray, size_t sourceArrayLength, size_t sourceIndex, Quaternion const& rotation, Vector2* destinationArray, size_t destinationArrayLength, size_t destinationIndex, size_t length) { if (!sourceArray || !destinationArray || destinationArrayLength < sourceArrayLength || sourceArrayLength < sourceIndex + length || destinationArrayLength < destinationIndex + length) return false; const auto rx = rotation.X + rotation.X; const auto ry = rotation.Y + rotation.Y; const auto rz = rotation.Z + rotation.Z; const auto rwz = rotation.W * rz; const auto rxx = rotation.X * rx; const auto rxy = rotation.X * ry; const auto ryy = rotation.Y * ry; const auto rzz = rotation.Z * rz; const auto a = 1.0f - ryy - rzz; const auto b = rxy - rwz; const auto c = rxy + rwz; const auto d = 1.0f - rxx - rzz; for (size_t i = 0; i < length; ++i) { const auto& source = sourceArray[sourceIndex = i]; destinationArray[destinationIndex].X = source.X * a + source.Y * b; destinationArray[destinationIndex].Y = source.X * c + source.Y * d; ++sourceIndex; ++destinationIndex; } return true; } bool Vector2::Transform(std::vector const& sourceArray, size_t sourceIndex, Quaternion const& rotation, std::vector& destinationArray, size_t destinationIndex, size_t length) { if (destinationArray.empty()) destinationArray.resize(sourceArray.size()); return Transform(sourceArray.data(), sourceArray.size(), sourceIndex, rotation, destinationArray.data(), destinationArray.size(), destinationIndex, length); } bool Vector3::Transform(Vector3 const* sourceArray, size_t sourceArrayLength, Matrix const& matrix, Vector3* destinationArray, size_t destinationLength) { if (!sourceArray || !destinationArray || destinationLength < sourceArrayLength) return false; for (size_t index = 0; index < sourceArrayLength; ++index) { const auto& source = sourceArray[index]; destinationArray[index].X = (source.X * matrix.M11 + source.Y * matrix.M21 + source.Z * matrix.M31) + matrix.M41; destinationArray[index].Y = (source.X * matrix.M12 + source.Y * matrix.M22 + source.Z * matrix.M32) + matrix.M42; destinationArray[index].Z = (source.X * matrix.M13 + source.Y * matrix.M23 + source.Z * matrix.M33) + matrix.M43; } return true; } bool Vector3::Transform(std::vector const& sourceArray, Matrix const& matrix, std::vector& destinationArray) { if (destinationArray.empty()) destinationArray.resize(sourceArray.size()); return Transform(sourceArray.data(), sourceArray.size(), matrix, destinationArray.data(), destinationArray.size()); } bool Vector3::Transform(Vector3 const* sourceArray, size_t sourceArrayLength, size_t sourceIndex, Matrix const& matrix, Vector3* destinationArray, size_t destinationLength, size_t destinationIndex, size_t length) { if (!sourceArray || !destinationArray || sourceArrayLength < sourceIndex + length || destinationLength < destinationIndex + length) return false; for (size_t index = 0; index < length; ++index) { const auto& source = sourceArray[sourceIndex + index]; destinationArray[destinationIndex + index].X = (source.X * matrix.M11 + source.Y * matrix.M21 + source.Z * matrix.M31) + matrix.M41; destinationArray[destinationIndex + index].Y = (source.X * matrix.M12 + source.Y * matrix.M22 + source.Z * matrix.M32) + matrix.M42; destinationArray[destinationIndex + index].Z = (source.X * matrix.M13 + source.Y * matrix.M23 + source.Z * matrix.M33) + matrix.M43; } return true; } bool Vector3::Transform(std::vector const& sourceArray, size_t sourceIndex, Matrix const& matrix, std::vector& destinationArray, size_t destinationIndex, size_t length) { if (destinationArray.empty()) destinationArray.resize(sourceArray.size()); return Transform(sourceArray.data(), sourceArray.size(), sourceIndex, matrix, destinationArray.data(), destinationArray.size(), destinationIndex, length); } bool Vector3::TransformNormal(Vector3 const* sourceArray, size_t sourceArrayLength, Matrix const& matrix, Vector3* destinationArray, size_t destionationArrayLength) { if (!sourceArray || !destinationArray || sourceArrayLength < destionationArrayLength) return false; for (size_t index = 0; index < sourceArrayLength; ++index) { const auto& source = sourceArray[index]; destinationArray[index].X = source.X * matrix.M11 + source.Y * matrix.M21 + source.Z * matrix.M31; destinationArray[index].Y = source.X * matrix.M12 + source.Y * matrix.M22 + source.Z * matrix.M32; destinationArray[index].Z = source.X * matrix.M13 + source.Y * matrix.M23 + source.Z * matrix.M33; } return true; } bool Vector3::TransformNormal(std::vector const& sourceArray, Matrix const& matrix, std::vector& destinationArray) { if (destinationArray.empty()) destinationArray.resize(sourceArray.size()); return TransformNormal(sourceArray.data(), sourceArray.size(), matrix, destinationArray.data(), destinationArray.size()); } bool Vector3::TransformNormal(Vector3 const* sourceArray, size_t sourceArrayLength, size_t sourceIndex, Matrix const& matrix, Vector3* destinationArray, size_t destinationLength, size_t destinationIndex, size_t length) { if (!sourceArray || !destinationArray || sourceArrayLength < sourceIndex + length || destinationLength < destinationIndex + length) return false; for (size_t index = 0; index < length; ++index) { const auto& source = sourceArray[sourceIndex + index]; destinationArray[destinationIndex + index].X = source.X * matrix.M11 + source.Y * matrix.M21 + source.Z * matrix.M31; destinationArray[destinationIndex + index].Y = source.X * matrix.M12 + source.Y * matrix.M22 + source.Z * matrix.M32; destinationArray[destinationIndex + index].Z = source.X * matrix.M13 + source.Y * matrix.M23 + source.Z * matrix.M33; } return true; } bool Vector3::TransformNormal(std::vector const& sourceArray, size_t sourceIndex, Matrix const& matrix, std::vector& destinationArray, size_t destinationIndex, size_t length) { if (destinationArray.empty()) destinationArray.resize(sourceArray.size()); return TransformNormal(sourceArray.data(), sourceArray.size(), sourceIndex, matrix, destinationArray.data(), destinationArray.size(), destinationIndex, length); } bool Vector3::TransformNormal(Vector3 const* sourceArray, size_t sourceArrayLength, Quaternion const& rotation, Vector3* destinationArray, size_t destinationLength) { if (!sourceArray || !destinationArray || destinationLength < sourceArrayLength) return false; const auto num1 = rotation.X + rotation.X; const auto num2 = rotation.Y + rotation.Y; const auto num3 = rotation.Z + rotation.Z; const auto num4 = rotation.W * num1; const auto num5 = rotation.W * num2; const auto num6 = rotation.W * num3; const auto num7 = rotation.X * num1; const auto num8 = rotation.X * num2; const auto num9 = rotation.X * num3; const auto num10 = rotation.Y * num2; const auto num11 = rotation.Y * num3; const auto num12 = rotation.Z * num3; const auto num13 = 1.0f - num10 - num12; const auto num14 = num8 - num6; const auto num15 = num9 + num5; const auto num16 = num8 + num6; const auto num17 = 1.0f - num7 - num12; const auto num18 = num11 - num4; const auto num19 = num9 - num5; const auto num20 = num11 + num4; const auto num21 = 1.0f - num7 - num10; for (size_t index = 0; index < sourceArrayLength; ++index) { const auto& source = sourceArray[index]; destinationArray[index].X = source.X * num13 + source.Y * num14 + source.Z * num15; destinationArray[index].Y = source.X * num16 + source.Y * num17 + source.Z * num18; destinationArray[index].Z = source.X * num19 + source.Y * num20 + source.Z * num21; } return true; } bool Vector3::TransformNormal(std::vector const& sourceArray, Quaternion const& rotation, std::vector& destinationArray) { if (destinationArray.empty()) destinationArray.resize(sourceArray.size()); return TransformNormal(sourceArray.data(), sourceArray.size(), rotation, destinationArray.data(), destinationArray.size()); } bool Vector3::TransformNormal(Vector3 const* sourceArray, size_t sourceArrayLength, size_t sourceIndex, Quaternion const& rotation, Vector3* destinationArray, size_t destinationLength, size_t destinationIndex, size_t length) { if (!sourceArray || !destinationArray || sourceArrayLength < sourceIndex + length || destinationLength < destinationIndex + length) return false; const auto num1 = rotation.X + rotation.X; const auto num2 = rotation.Y + rotation.Y; const auto num3 = rotation.Z + rotation.Z; const auto num4 = rotation.W * num1; const auto num5 = rotation.W * num2; const auto num6 = rotation.W * num3; const auto num7 = rotation.X * num1; const auto num8 = rotation.X * num2; const auto num9 = rotation.X * num3; const auto num10 = rotation.Y * num2; const auto num11 = rotation.Y * num3; const auto num12 = rotation.Z * num3; const auto num13 = 1.0f - num10 - num12; const auto num14 = num8 - num6; const auto num15 = num9 + num5; const auto num16 = num8 + num6; const auto num17 = 1.0f - num7 - num12; const auto num18 = num11 - num4; const auto num19 = num9 - num5; const auto num20 = num11 + num4; const auto num21 = 1.0f - num7 - num10; for (size_t index = 0; index < length; ++index) { const auto& source = sourceArray[sourceIndex + index]; destinationArray[destinationIndex + index].X = source.X * num13 + source.Y * num14 + source.Z * num15; destinationArray[destinationIndex + index].Y = source.X * num16 + source.Y * num17 + source.Z * num18; destinationArray[destinationIndex + index].Z = source.X * num19 + source.Y * num20 + source.Z * num21; } return true; } bool Vector3::TransformNormal(std::vector const& sourceArray, size_t sourceIndex, Quaternion const& rotation, std::vector& destinationArray, size_t destinationIndex, size_t length) { if (destinationArray.empty()) destinationArray.resize(sourceArray.size()); return TransformNormal(sourceArray.data(), sourceArray.size(), sourceIndex, rotation, destinationArray.data(), destinationArray.size(), destinationIndex, length); } bool Vector4::Transform(Vector4 const* sourceArray, size_t sourceLength, Matrix const& matrix, Vector4* destinationArray, size_t destinationLength) { if (!sourceArray || !destinationArray || destinationLength < sourceLength) return false; for (size_t index = 0; index < sourceLength; ++index) { const auto& source = sourceArray[index]; destinationArray[index].X = source.X * matrix.M11 + source.Y * matrix.M21 + source.Z * matrix.M31 + source.W * matrix.M41; destinationArray[index].Y = source.X * matrix.M12 + source.Y * matrix.M22 + source.Z * matrix.M32 + source.W * matrix.M42; destinationArray[index].Z = source.X * matrix.M13 + source.Y * matrix.M23 + source.Z * matrix.M33 + source.W * matrix.M43; destinationArray[index].W = source.X * matrix.M14 + source.Y * matrix.M24 + source.Z * matrix.M34 + source.W * matrix.M44; } return true; } bool Vector4::Transform(std::vector const& sourceArray, size_t sourceLength, Matrix const& matrix, std::vector& destinationArray) { if (destinationArray.empty()) destinationArray.resize(sourceArray.size()); return Transform(sourceArray.data(), sourceArray.size(), matrix, destinationArray.data(), destinationArray.size()); } bool Vector4::Transform(Vector4 const* sourceArray, size_t sourceLength, size_t sourceIndex, Matrix const& matrix, Vector4* destinationArray, size_t destinationLength, size_t destinationIndex, size_t length) { if (!sourceArray || !destinationArray || sourceLength < sourceIndex + length || destinationLength < destinationIndex + length) return false; for (size_t i = 0; i < length; ++i) { const auto& source = sourceArray[sourceIndex + i]; destinationArray[destinationIndex].X = source.X * matrix.M11 + source.Y * matrix.M21 + source.Z * matrix.M31 + source.W * matrix.M41; destinationArray[destinationIndex].Y = source.X * matrix.M12 + source.Y * matrix.M22 + source.Z * matrix.M32 + source.W * matrix.M42; destinationArray[destinationIndex].Z = source.X * matrix.M13 + source.Y * matrix.M23 + source.Z * matrix.M33 + source.W * matrix.M43; destinationArray[destinationIndex].W = source.X * matrix.M14 + source.Y * matrix.M24 + source.Z * matrix.M34 + source.W * matrix.M44; } return true; } bool Vector4::Transform(std::vector const& sourceArray, size_t sourceIndex, Matrix const& matrix, std::vector& destinationArray, size_t destinationIndex, size_t length) { if (destinationArray.empty()) destinationArray.resize(sourceArray.size()); return Transform(sourceArray.data(), sourceArray.size(), sourceIndex, matrix, destinationArray.data(), destinationArray.size(), destinationIndex, length); } bool Vector4::Transform(Vector4 const* sourceArray, size_t sourceLength, Quaternion const& rotation, Vector4* destinationArray, size_t destinationLength) { if (!sourceArray || !destinationArray || destinationLength < sourceLength) return false; const auto num1 = rotation.X + rotation.X; const auto num2 = rotation.Y + rotation.Y; const auto num3 = rotation.Z + rotation.Z; const auto num4 = rotation.W * num1; const auto num5 = rotation.W * num2; const auto num6 = rotation.W * num3; const auto num7 = rotation.X * num1; const auto num8 = rotation.X * num2; const auto num9 = rotation.X * num3; const auto num10 = rotation.Y * num2; const auto num11 = rotation.Y * num3; const auto num12 = rotation.Z * num3; const auto num13 = 1.0f - num10 - num12; const auto num14 = num8 - num6; const auto num15 = num9 + num5; const auto num16 = num8 + num6; const auto num17 = 1.0f - num7 - num12; const auto num18 = num11 - num4; const auto num19 = num9 - num5; const auto num20 = num11 + num4; const auto num21 = 1.0f - num7 - num10; for (size_t index = 0; index < sourceLength; ++index) { const auto& source = sourceArray[index]; destinationArray[index].X = source.Z * num13 + source.Y * num14 + source.Z * num15; destinationArray[index].Y = source.Z * num16 + source.Y * num17 + source.Z * num18; destinationArray[index].Z = source.Z * num19 + source.Y * num20 + source.Z * num21; destinationArray[index].W = sourceArray[index].W; } return true; } bool Vector4::Transform(std::vector const& sourceArray, Quaternion const& rotation, std::vector& destinationArray) { if (destinationArray.empty()) destinationArray.resize(sourceArray.size()); return Transform(sourceArray.data(), sourceArray.size(), rotation, destinationArray.data(), destinationArray.size()); } bool Vector4::Transform(Vector4 const* sourceArray, size_t sourceLength, size_t sourceIndex, Quaternion const& rotation, Vector4* destinationArray, size_t destinationLength, size_t destinationIndex, size_t length) { if (!sourceArray || !destinationArray || sourceLength < sourceIndex + length || destinationLength < destinationIndex + length) return false; const auto num1 = rotation.X + rotation.X; const auto num2 = rotation.Y + rotation.Y; const auto num3 = rotation.Z + rotation.Z; const auto num4 = rotation.W * num1; const auto num5 = rotation.W * num2; const auto num6 = rotation.W * num3; const auto num7 = rotation.X * num1; const auto num8 = rotation.X * num2; const auto num9 = rotation.X * num3; const auto num10 = rotation.Y * num2; const auto num11 = rotation.Y * num3; const auto num12 = rotation.Z * num3; const auto num13 = 1.0f - num10 - num12; const auto num14 = num8 - num6; const auto num15 = num9 + num5; const auto num16 = num8 + num6; const auto num17 = 1.0f - num7 - num12; const auto num18 = num11 - num4; const auto num19 = num9 - num5; const auto num20 = num11 + num4; const auto num21 = 1.0f - num7 - num10; for (size_t i = 0; i < length; ++i) { const auto& source = sourceArray[sourceIndex + i]; destinationArray[destinationIndex].X = source.X * num13 + source.Y * num14 + source.Z * num15; destinationArray[destinationIndex].Y = source.X * num16 + source.Y * num17 + source.Z * num18; destinationArray[destinationIndex].Z = source.X * num19 + source.Y * num20 + source.Z * num21; destinationArray[destinationIndex].W = source.W; } return true; } bool Vector4::Transform(std::vector const& sourceArray, size_t sourceIndex, Quaternion const& rotation, std::vector& destinationArray, size_t destinationIndex, size_t length) { if (destinationArray.empty()) destinationArray.resize(sourceArray.size()); return Transform(sourceArray.data(), sourceArray.size(), sourceIndex, rotation, destinationArray.data(), destinationArray.size(), destinationIndex, length); } Quaternion Quaternion::CreateFromAxisAngle(Vector3 const& axis, float angle) { const auto num1 = angle * 0.5f; const auto num2 = std::sin(num1); const auto num3 = std::cos(num1); Quaternion fromAxisAngle; fromAxisAngle.X = axis.X * num2; fromAxisAngle.Y = axis.Y * num2; fromAxisAngle.Z = axis.Z * num2; fromAxisAngle.W = num3; return fromAxisAngle; } Quaternion Quaternion::CreateFromYawPitchRoll(float yaw, float pitch, float roll) { const auto num1 = roll * 0.5f; const auto num2 = std::sin(num1); const auto num3 = std::cos(num1); const auto num4 = pitch * 0.5f; const auto num5 = std::sin(num4); const auto num6 = std::cos(num4); const auto num7 = yaw * 0.5f; const auto num8 = std::sin(num7); const auto num9 = std::cos(num7); Quaternion fromYawPitchRoll; fromYawPitchRoll.X = (num9 * num5 * num3 + num8 * num6 * num2); fromYawPitchRoll.Y = (num8 * num6 * num3 - num9 * num5 * num2); fromYawPitchRoll.Z = (num9 * num6 * num2 - num8 * num5 * num3); fromYawPitchRoll.W = (num9 * num6 * num3 + num8 * num5 * num2); return fromYawPitchRoll; } Quaternion Quaternion::CreateFromRotationMatrix(Matrix const& matrix) { const auto num1 = matrix.M11 + matrix.M22 + matrix.M33; Quaternion fromRotationMatrix; if (num1 > 0.0) { const auto num2 = std::sqrt(num1 + 1.0F); fromRotationMatrix.W = num2 * 0.5f; const auto num3 = 0.5f / num2; fromRotationMatrix.X = (matrix.M23 - matrix.M32) * num3; fromRotationMatrix.Y = (matrix.M31 - matrix.M13) * num3; fromRotationMatrix.Z = (matrix.M12 - matrix.M21) * num3; } else if (matrix.M11 >= matrix.M22 && matrix.M11 >= matrix.M33) { const auto num4 = std::sqrt(1.0F + matrix.M11 - matrix.M22 - matrix.M33); const auto num5 = 0.5f / num4; fromRotationMatrix.X = 0.5f * num4; fromRotationMatrix.Y = (matrix.M12 + matrix.M21) * num5; fromRotationMatrix.Z = (matrix.M13 + matrix.M31) * num5; fromRotationMatrix.W = (matrix.M23 - matrix.M32) * num5; } else if (matrix.M22 > matrix.M33) { const auto num6 = std::sqrt(1.0F + matrix.M22 - matrix.M11 - matrix.M33); const auto num7 = 0.5f / num6; fromRotationMatrix.X = (matrix.M21 + matrix.M12) * num7; fromRotationMatrix.Y = 0.5f * num6; fromRotationMatrix.Z = (matrix.M32 + matrix.M23) * num7; fromRotationMatrix.W = (matrix.M31 - matrix.M13) * num7; } else { const auto num8 = std::sqrt(1.0F + matrix.M33 - matrix.M11 - matrix.M22); const auto num9 = 0.5f / num8; fromRotationMatrix.X = (matrix.M31 + matrix.M13) * num9; fromRotationMatrix.Y = (matrix.M32 + matrix.M23) * num9; fromRotationMatrix.Z = 0.5f * num8; fromRotationMatrix.W = (matrix.M12 - matrix.M21) * num9; } return fromRotationMatrix; } Quaternion Quaternion::Slerp(Quaternion const& quaternion1, Quaternion const& quaternion2, float amount) { const auto num1 = amount; auto d = quaternion1.X * quaternion2.X + quaternion1.Y * quaternion2.Y + quaternion1.Z * quaternion2.Z + quaternion1.W * quaternion2.W; bool flag = false; if (d < 0.0) { flag = true; d = -d; } float num2 = 0; float num3 = 0; if (d > 0.99999898672103882) { num2 = 1.0f - num1; num3 = flag ? -num1 : num1; } else { const auto a = std::acos(d); const auto num4 = 1.0F / std::sin(a); num2 = std::sin((1.0F - num1) * a) * num4; num3 = flag ? -std::sin(num1 * a) * num4 : std::sin(num1 * a) * num4; } Quaternion quaternion; quaternion.X = num2 * quaternion1.X + num3 * quaternion2.X; quaternion.Y = num2 * quaternion1.Y + num3 * quaternion2.Y; quaternion.Z = num2 * quaternion1.Z + num3 * quaternion2.Z; quaternion.W = num2 * quaternion1.W + num3 * quaternion2.W; return quaternion; } Quaternion Quaternion::Lerp(Quaternion const& quaternion1, Quaternion const& quaternion2, float amount) { const auto num1 = amount; const auto num2 = 1.0f - num1; Quaternion quaternion; if (quaternion1.X * quaternion2.X + quaternion1.Y * quaternion2.Y + quaternion1.Z * quaternion2.Z + quaternion1.W * quaternion2.W >= 0.0) { quaternion.X = num2 * quaternion1.X + num1 * quaternion2.X; quaternion.Y = num2 * quaternion1.Y + num1 * quaternion2.Y; quaternion.Z = num2 * quaternion1.Z + num1 * quaternion2.Z; quaternion.W = num2 * quaternion1.W + num1 * quaternion2.W; } else { quaternion.X = num2 * quaternion1.X - num1 * quaternion2.X; quaternion.Y = num2 * quaternion1.Y - num1 * quaternion2.Y; quaternion.Z = num2 * quaternion1.Z - num1 * quaternion2.Z; quaternion.W = num2 * quaternion1.W - num1 * quaternion2.W; } const auto num3 = 1.0f / std::sqrt(quaternion.X * quaternion.X + quaternion.Y * quaternion.Y + quaternion.Z * quaternion.Z + quaternion.W * quaternion.W); quaternion.X *= num3; quaternion.Y *= num3; quaternion.Z *= num3; quaternion.W *= num3; return quaternion; } }