
CS2J: The User Guide

CS2J: The User Guide
Trial version
Overview
Running the translator

Visualizing the translation
Excluding paths
Dumping the translation repository
Guiding the translation process (adding Cheats)

.NET Framework translations
Translation files

Trial version

The trial version of CS2J may be used for evaluation purposes only. It has some usage
restrictions compared to the full product:

1. Java classes are truncated at 120 lines.
2. The XML translation files are signed. You can make modifications, or add new

translation files, and these will be used by CS2J as long as there are 5 or less
translation files without valid signatures. If you hit this limit, then just restore
some of the original translation files and try again.

Overview

CS2J is a C# application that converts C# types (classes, structs, enums, delegates) to
Java types (classes, enums).

The translator first crawls over the whole of the C# application and builds up an internal
data structure, called the translation repository, that stores translation metadata for all
the application's classes, structs, enums, etc. It then extends this repository from XML
files that add translation metadata for .NET Framework system calls and third party
libraries used by the application. Using this translation repository it then takes each
class, struct, enum, and so on, from the application and translates it to Java:

1. Translate the C# source into a C# parse tree.
2. Translate the C# parse tree into a Java(ish) parse tree. This converts C# syntax

into Java syntax, it doesn't translate method calls or do any translations that
depend on types.

3. Generate types for the nodes in the Java(ish) parse tree and use the translation
repository to translate types and method calls into their Java equivalent.

4. Pretty print the Java parse tree to Java source files (one per top level type in the
C# source file).

Running the translator

CS2J is a Windows executable that can be run from the command line. (There is also a
GUI launcher which is not yet described in this document, ask for details).

To run the translator there are three required arguments:
● The directory where the XML .Net Framework translation files are held. e.g

NetFramework.
● The directory that is the root of the C# application to be translated.
● The directory where the java classes will be written (e.g. JavaProject/src).

There are many, many more options too, cs2j --help, describes them.

A minimal command line would be:

CS2jTranslator\bin\cs2j.exe -netdir NetFramework -odir <java project source> <cs application root>

This will translate all cs files below <cs application root> and place the resultant java
files below <java project source>. (The directory structure of the java files will not match
the directory structure of the C# files, instead it will match the java namespaces). To
translate calls to the .NET libraries the translator will use the translation templates found
below NetFramework.

A slightly more complicated command line would be:

CS2jTranslator\bin\cs2j.exe -debug 1 -netdir NetFramework -odir <java project source> -appdir <cs application root> -csdir <cs tx root>

This will add all cs files below <cs application root> to the translation repository, and
translate the files below <cs tx root> (for example, <cs tx root> could be a sub-part of
<cs application root>).

The translator will place the resultant java files below <java project source>. To translate
calls to the .NET libraries the translator will use the translation templates found below
NetFramework and it will write some additional diagnostics to the terminal. Increasing
amounts of diagnostics are output as the debug parameter is increased from 1 to 10.

We now briefly discuss some of the other options to the translator.

Visualizing the translation
The -showXXXX options will show the internal data structure during processing. There
are options to display the parse tree at each stage: CSharp, Java Syntax, and Java.

Excluding paths
The -exXXX options allow you to exclude files and whole sub-trees (by giving the root of
the excluded directory) from consideration. You can block parts of the XML translation
area; parts of the application when generating the translation repository; and part of
the source to be translated. For these options you can specify multiple exclusion paths
separated by semi-colons.

Dumping the translation repository

The translation database generated from the application can be dumped to a set of
XML files with the -dumpxml option. This produces a directory structure matching the
application and XML translation namespaces. Leaf XML files show the translation for
each top level C# type. These translation files are discussed in more detail in the next
section.

Guiding the translation process (adding Cheats)
The -cheatdir option points to a directory hierarchy that matches the target java output
directory structure. You can put two types of file here:

● files with extension .none: If file nothankyou.none exists in the cheats area then
the translator won't produce a class file for nothankyou.

● files with extension .java: If file manualisbetter.java exists in the cheats area then
the translator will copy manualisbetter.java instead of its own translation.

You should consider carefully before using the cheats facility. We do not use it for our
main translated product. For code that we can't translate we move it into a separate
(untranslated) namespace (e.g. Application.Utils) and write separate versions for .NET
and Java.

.NET Framework translations

The provided .NET framework translations are in the NetFramework\System sub-
folder. This is structured in the same way as the .NET framework namespace, i.e., the
translation for "System.Collections.ArrayList" is the file System\Collections\ArrayList.xml.
The translation file's location must match the position in the .NET namespace or the
translator won't find it.

These files are XML and the translator is a bit finicky about their structure and if it sees
something it doesn't recognise it often fails silently. There is not yet a schema file to
check correctness.

A useful trick when a translation doesn't seem to be picked up is to ask the translator to
dump the translation database (option -dumpxml) and look at the resultant xml files to
see if it recognized the translation template.

Translation files
The format of the translation file deserves another document, unfortunately it isn't written
(yet), so you will have to divine it from the provided translations, and asking questions.

