CS2J: The User Guide

Tran Iatun

BSZd




CS2J: The User Guide
Trial version
Overview
Running the translator
Visualizing the translation
Excluding paths
Dumping the translation repository
Guiding the translation process (adding Cheats)
CS2J Parameters
.NET Framework translations
Translation files
Appendix A - Configuration File
Section [General]
Section [Experimental]



https://docs.google.com/a/twigletsoftware.com/document/d/sUpOV4fA3V-8njyhe-YtH8Q/headless/print#heading=h.ns2kpd40qg5c
https://docs.google.com/a/twigletsoftware.com/document/d/sUpOV4fA3V-8njyhe-YtH8Q/headless/print#heading=h.sxzypltn1wdn
https://docs.google.com/a/twigletsoftware.com/document/d/sUpOV4fA3V-8njyhe-YtH8Q/headless/print#heading=h.pxfhgrgjcqsh
https://docs.google.com/a/twigletsoftware.com/document/d/sUpOV4fA3V-8njyhe-YtH8Q/headless/print#heading=h.z32v616kb14x
https://docs.google.com/a/twigletsoftware.com/document/d/sUpOV4fA3V-8njyhe-YtH8Q/headless/print#heading=h.c84t7gi3r1mo
https://docs.google.com/a/twigletsoftware.com/document/d/sUpOV4fA3V-8njyhe-YtH8Q/headless/print#heading=h.b6ybuvwihft4
https://docs.google.com/a/twigletsoftware.com/document/d/sUpOV4fA3V-8njyhe-YtH8Q/headless/print#heading=h.iy5wglqcelxv
https://docs.google.com/a/twigletsoftware.com/document/d/sUpOV4fA3V-8njyhe-YtH8Q/headless/print#heading=h.hjr7whsrz474
https://docs.google.com/a/twigletsoftware.com/document/d/sUpOV4fA3V-8njyhe-YtH8Q/headless/print#heading=h.44wnmian3szr
https://docs.google.com/a/twigletsoftware.com/document/d/sUpOV4fA3V-8njyhe-YtH8Q/headless/print#heading=h.ko5dkufbd571
https://docs.google.com/a/twigletsoftware.com/document/d/sUpOV4fA3V-8njyhe-YtH8Q/headless/print#heading=h.xf5acubhwet5
https://docs.google.com/a/twigletsoftware.com/document/d/sUpOV4fA3V-8njyhe-YtH8Q/headless/print#heading=h.3fkxextum4lz
https://docs.google.com/a/twigletsoftware.com/document/d/sUpOV4fA3V-8njyhe-YtH8Q/headless/print#heading=h.vah5hzo42vvd
https://docs.google.com/a/twigletsoftware.com/document/d/sUpOV4fA3V-8njyhe-YtH8Q/headless/print#heading=h.vah5hzo42vvd

Trial version

The trial version of CS2J may be used for evaluation purposes only. It has some usage
restrictions compared to the full product:

1. Java classes are truncated at 120 lines.

2. The XML translation files are signed. You can make modifications, or add new
translation files, and these will be used by CS2J as long as there are 5 or less
translation files without valid signatures. If you hit this limit, then just restore
some of the original translation files and try again.

Overview

CS2J is a C# application that converts C# types (classes, structs, enums, delegates) to
Java types (classes and enums).

The translator first crawls over the whole of the C# application and builds up an internal
data structure, called the translation repository, that stores translation metadata for all the
application's classes, structs, enums, etc. It then extends this repository from XML files
that add translation metadata for .NET Framework system calls and third party libraries
used by the application. Using this translation repository it then takes each class, struct,
enum, and so on, from the application and translates it to Java:

1. Translate the C# source into a C# parse tree.

2. Translate the C# parse tree into a Java(ish) parse tree. This converts C# syntax
into Java syntax, it doesn't translate method calls or do any translations that
depend on types.

3. Generate types for the nodes in the Java(ish) parse tree and use the translation
repository to translate types and method calls into their Java equivalent.

4. Pretty print the Java parse tree to Java source files (one per top level type in the
C# source file).

Running the translator

CS2J is a Windows executable that can be run from the command line. (There is also a
GUI launcher which is not yet described in this document, ask for details).



To run the translator there are three required arguments:
e The directory where the XML .Net Framework translation files are held. e.g
NetFramework.
The directory that is the root of the C# application to be translated.
The directory where the java classes will be written (e.g. JavaProject/src).

There are many, many more options too, cs2j --help describes the most useful,
section CS2J Parameters describes them all.

Assuming you are in the root directory of the unpacked archive then a minimal command
line would be:

CS2jTranslator\bin\cs2j.exe -net-templates-dir=.\NetFramework\ -out-java-dir=<java project source> -app-dir=<cs
application root>

This will translate all cs files below <cs application root> and place the resultant java files
below <java project source>. (The directory structure of the java files will not match the
directory structure of the C# files, instead it will match the java namespaces). To
translate calls to the .NET libraries the translator will use the translation templates found
below NetFramework (note, that argument is the name of a directory).

A slightly more complicated command line would be:

CS2jTranslator\bin\cs2j.exe config=..\configs\appconfig.ini -debug=>5 -net-templates-dir=.\NetFramework\
-out-java-dir=<java project source> -app-dir=<cs application root> -cs-dir=<cs tx root>

This will read parameters from the configuration file ..\configs\appconfig.ini. The format of
configuration files is specified in Appendix A - Configuration File. Settings in the
configuration file are overridden by the other command line arguments.

The command line arguments tell the translator to add all cs files below <cs application
root> to the translation repository, and translate the files below <cs tx root> (for example,
<cs tx root> could be a component of <cs application root>).

The translator will place the resultant java files below <java project source>. The
translator will use the translation templates found below the NetFramework sub-directory
to translate calls to the .NET libraries. It will write diagnostics to the terminal, increasing
amounts of diagnostics are output as the debug parameter is increased from 0 to 10.

We now briefly discuss some of the other options to the translator.

Visualizing the translation

The -show-XXXX options will show the internal data structure during processing. There


https://docs.google.com/a/twigletsoftware.com/document/d/sUpOV4fA3V-8njyhe-YtH8Q/headless/print#bookmark=id.u9wrp2izdhxt
https://docs.google.com/a/twigletsoftware.com/document/d/sUpOV4fA3V-8njyhe-YtH8Q/headless/print#bookmark=id.p34s27b5nlf1

are options to display the parse tree at each stage: CSharp, Java Syntax, and Java.

Excluding paths

The -ex-XXX options allow you to exclude files and whole sub-trees (by giving the root of
the excluded directory) from consideration. You can block parts of the XML translation
area; parts of the application when generating the translation repository; and part of the
source to be translated. For these options you can specify multiple exclusion paths
separated by semi-colons.

Dumping the translation repository

The translation database generated from the application can be dumped to a set of XML
files with the -dumpxml option. This produces a directory structure matching the
application and XML translation namespaces. Leaf XML files show the translation for
each top level C# type. These translation files are discussed in more detail in the next
section.

Guiding the translation process (adding Cheats)

The -cheatdir option points to a directory hierarchy that matches the target java output
directory structure. You can put two types of file here:
o files with extension .none: If file nothankyou.none exists in the cheats area then
the translator won't produce a class file for nothankyou.
o files with extension .java: If file manualisbetter.java exists in the cheats area then
the translator will copy manualisbetter.java instead of its own translation.

You should consider carefully before using the cheats facility. We do not use it for our
main translated product. For code that we can't translate we move it into a separate
(untranslated) namespace (e.g. Application.Utils) and write separate versions for .NET
and Java.

CS2J Parameters

argument default | meaning

-version false output CS2J version

-help false output help message, listing most common
options

-V increase verbosity




-debug

set debug level for diagnostic messages
(0..10)

-debug-template-extraction | true if false turn off debug for template extraction
phase
-warnings true output CS2J warnings
-warnings-resolve-failures | false output warnings for failure to resolve
external references
-show-csharp false output representation of C# parse tree
-show-javasyntax false output representation of parse tree after C#
to Java syntax pass
-show-java false output representation of final parse tree
before pretty print pass
-D set a C# preprocessor token (can be
repeated)
-dump-xmis false dump translation templates (including those
for the C# application being processed)
-out-xml-dir tmpXMLs | directory to dump translation templates
sub
directory
-out-java-dir current directory to write java output files
directory
-cheat-dir directories containing cheat files
-net-templates-dir directories/files containing translation
templates
-ex-net-templates-dir directories/files to exclude from
-net-templates-dir
-app-dir as -cs-dir | directories/files containing C# application
-ex-app-dir directories/files to exclude from -app-dir
-cs-dir directories/files containing C# code to
translate
-ex-cs-dir directories/files to exclude from -cs-dir

-alt-translations

list of translation template variants that
should have priority




-keep-parens true carry over (redundant) parenthesis from C#

source

-timestamp-files true add timestamp comment to head ofl Java
files

-blanket-throw true add “throws Exception” to all methods

-make-javadoc-comments | true convert C# XML documentation comments

to Javadoc comments

-make-java-naming-convent| true rename method names to conform to the
ions usual Java conventions (ExecutePool()
becomes executePool()). This option
implies “LCC” is added to alt-translations.

-experimental-enums-to-nu | false convert enums to integer constants
meric-consts

-experimental-unsigned-to-s| false convert unsigned C# data types to signed

igned Java data types

-experimental-unsigned-to-b| false convert unsigned C# data types to bigger

igger-signed Java signed types (e.g., ushort to int)

-config INI file specifying configuration options (see
Appendix A).

.NET Framework translations

The provided .NET framework translations are in the NetFramework\System sub-folder.
This is structured in the same way as the .NET framework namespace, i.e., the
translation for "System.Collections.ArrayList" is the file System\Collections\ArrayList.xml.
(This is just a convention, the location and name of a translation file is irrelevant).

These files are XML, the translator is a bit finicky about their structure and if it sees
something it doesn't recognise it often fails silently.

A useful trick when a translation doesn't seem to be picked up is to ask the translator to
dump the translation database (option -dump-xmls) and look at the resultant XML files to
see if it recognized the translation template.

Translation files

The format of the translation file deserves another document, unfortunately it isn't written


https://docs.google.com/a/twigletsoftware.com/document/d/sUpOV4fA3V-8njyhe-YtH8Q/headless/print#bookmark=id.p34s27b5nlf1

(yet). Look at the provided translations under NetFramework for inspiration and, as

always, ask us for help.

Appendix A - Configuration File

Section [General]

key default meaning
verbose 0 verbosity level
debug 1 set debug level for diagnostic
messages (0..10)
debug-template-extraction | as debug set a different debug level for template
extraction phase
warnings true output CS2J warning messages
warnings-resolve-failures false output warnings for failure to resolve
external references
show-csharp false output representation of C# parse tree
show-javasyntax false output representation of parse tree
after C# to Java syntax pass
show-java false output representation of final parse
tree before pretty print pass
define set a C# preprocessor token (multiple
tokens can be separated by ‘|’
character)
dump-xmis false dump translation templates (including
those for the C# application being
processed)
out-xml-dir tmpXMLs directory to dump translation templates
sub
directory
out-java-dir current directory to write java output files
directory
cheat-dir directories containing cheat files




net-templates-dir

directories/files containing translation
templates

ex-net-templates-dir

directories/files to exclude from
-net-templates-dir

app-dir as cs-dir directories/files containing C#
application

ex-app-dir directories/files to exclude from
-app-dir

cs-dir directories/files containing C# code to
translate

ex-cs-dir directories/files to exclude from -cs-dir

alt-translations list of translation template variants that
have priority over default

keep-parens true keep (redundant) parenthesis from C#

timestamp-files true add timestamp comment to head of
Java files

blanket-throw true add “throws Exception” to all methods

make-javadoc-comments true

convert C# XML documentation
comments to Javadoc comments

make-java-naming-conventi | true
ons

rename method names to conform to
the usual Java conventions
(ExecutePool() becomes
executePool()). This option implies
“LCC” is added to alt-translations.

Section [Experimental]

enums-to-numeric-consts | false

convert enums to integer constants

unsigned-to-signed false

convert unsigned C# data types to
signed Java data types

unsigned-to-bigger-signed | false

convert unsigned C# data types to
bigger Java signed types (e.g., ushort




to int)




