- Started Windows, Metro and Linux Platform-Plugins - Moved the RecordingSample to the Samples folder - Started two samples for using the graphics device in a WinForms and Wpf Editor - Refactorings in the AddIn-System - Moved the Window initialization-code to the Platform modules - Changed the License text in all code files which is now way smaller - Started ProjectConverter tool which converts all the projects and solution to the target configuration - Changed the SupportedPlatform names in the Resource files - Changed the WIN8 define to WINDOWSMETRO which is actually meant - Removed NLog and started our own Logger class - Many more stuff...
297 lines
12 KiB
C#
297 lines
12 KiB
C#
using System;
|
|
|
|
// This file is part of the ANX.Framework created by the
|
|
// "ANX.Framework developer group" and released under the Ms-PL license.
|
|
// For details see: http://anxframework.codeplex.com/license
|
|
|
|
namespace ANX.Framework
|
|
{
|
|
public class Curve
|
|
{
|
|
private CurveKeyCollection keys;
|
|
private CurveLoopType preLoop;
|
|
private CurveLoopType postLoop;
|
|
|
|
public CurveLoopType PreLoop
|
|
{
|
|
get { return preLoop; }
|
|
set { preLoop = value; }
|
|
}
|
|
public CurveLoopType PostLoop
|
|
{
|
|
get { return postLoop; }
|
|
set { postLoop = value; }
|
|
}
|
|
|
|
public CurveKeyCollection Keys
|
|
{
|
|
get
|
|
{
|
|
return keys;
|
|
}
|
|
}
|
|
|
|
public Boolean IsConstant
|
|
{
|
|
get
|
|
{
|
|
return this.keys.Count <= 1;
|
|
}
|
|
}
|
|
|
|
public Curve Clone()
|
|
{
|
|
Curve result = new Curve();
|
|
result.keys = this.keys.Clone();
|
|
result.preLoop = this.preLoop;
|
|
result.postLoop = this.postLoop;
|
|
return result;
|
|
}
|
|
public Curve()
|
|
{
|
|
this.keys = new CurveKeyCollection();
|
|
}
|
|
|
|
#region tangent calculation
|
|
//formulas from: http://msdn.microsoft.com/de-de/library/microsoft.xna.framework.curvetangent%28v=xnagamestudio.40%29.aspx
|
|
public void ComputeTangent(Int32 index, CurveTangent tangentInOutType)
|
|
{
|
|
if (index < 0 || index >= keys.Count)
|
|
{
|
|
throw new ArgumentOutOfRangeException();
|
|
}
|
|
CurveKey prev = index > 0 ? this.keys[index - 1] : this.keys[index];
|
|
CurveKey current = this.keys[index];
|
|
current.TangentIn = 0;
|
|
CurveKey next = index < this.keys.Count - 1 ? this.keys[index + 1] : this.keys[index];
|
|
|
|
|
|
switch (tangentInOutType)
|
|
{
|
|
case CurveTangent.Flat:
|
|
current.TangentIn = 0;
|
|
current.TangentOut = 0;
|
|
break;
|
|
case CurveTangent.Linear:
|
|
current.TangentIn = current.Value - prev.Value;
|
|
current.TangentOut = next.Value - current.Value;
|
|
break;
|
|
case CurveTangent.Smooth:
|
|
current.TangentIn = ((next.Value - prev.Value) * ((current.Position - prev.Position) / (next.Position - prev.Position)));
|
|
current.TangentOut = ((next.Value - prev.Value) * ((next.Position - current.Position) / (next.Position - prev.Position)));
|
|
break;
|
|
}
|
|
}
|
|
public void ComputeTangent(Int32 index, CurveTangent tangentInType, CurveTangent tangentOutType)
|
|
{
|
|
if (index < 0 || index >= keys.Count)
|
|
{
|
|
throw new ArgumentOutOfRangeException();
|
|
}
|
|
|
|
CurveKey prev = index > 0 ? this.keys[index - 1] : this.keys[index];
|
|
CurveKey current = this.keys[index];
|
|
current.TangentIn = 0;
|
|
CurveKey next = index < this.keys.Count - 1 ? this.keys[index + 1] : this.keys[index];
|
|
|
|
|
|
switch (tangentInType)
|
|
{
|
|
case CurveTangent.Flat:
|
|
current.TangentIn = 0;
|
|
break;
|
|
case CurveTangent.Linear:
|
|
current.TangentIn = current.Value - prev.Value;
|
|
break;
|
|
case CurveTangent.Smooth:
|
|
current.TangentIn = ((next.Value - prev.Value) * ((current.Position - prev.Position) / (next.Position - prev.Position)));
|
|
break;
|
|
}
|
|
switch (tangentOutType)
|
|
{
|
|
case CurveTangent.Flat:
|
|
current.TangentOut = 0;
|
|
break;
|
|
case CurveTangent.Linear:
|
|
current.TangentOut = next.Value - current.Value;
|
|
break;
|
|
case CurveTangent.Smooth:
|
|
current.TangentOut = ((next.Value - prev.Value) * ((next.Position - current.Position) / (next.Position - prev.Position)));
|
|
break;
|
|
}
|
|
|
|
}
|
|
public void ComputeTangents(CurveTangent tangentInOutType)
|
|
{
|
|
for (int i = 0; i < this.keys.Count; ++i)
|
|
{
|
|
this.ComputeTangent(i, tangentInOutType);
|
|
}
|
|
}
|
|
public void ComputeTangents(CurveTangent tangentInType, CurveTangent tangentOutType)
|
|
{
|
|
for (int i = 0; i < this.keys.Count; ++i)
|
|
{
|
|
this.ComputeTangent(i, tangentInType, tangentOutType);
|
|
}
|
|
}
|
|
|
|
#endregion
|
|
|
|
public Single Evaluate(Single position)
|
|
{
|
|
int wraps;
|
|
//Get first and last Point
|
|
CurveKey first = keys[0];
|
|
float firstPosition = first.Position;
|
|
CurveKey last = keys[keys.Count - 1];
|
|
float lastPosition = last.Position;
|
|
//tspan is min 1 to avoid deadlock at constant curves
|
|
float timeSpan = Math.Max(1, lastPosition - firstPosition);
|
|
//wanted point before first point
|
|
if (position < first.Position)
|
|
{
|
|
// Description from : http://msdn.microsoft.com/en-us/library/microsoft.xna.framework.curvelooptype.aspx
|
|
switch (this.PreLoop)
|
|
{
|
|
case CurveLoopType.Constant:
|
|
//The Curve will evaluate to its first key for positions before the first point in the Curve and to the last key for positions after the last point.
|
|
return first.Value;
|
|
|
|
case CurveLoopType.Linear:
|
|
// Linear interpolation will be performed to determine the value.
|
|
return first.Value - first.TangentIn * (first.Position - position);
|
|
|
|
case CurveLoopType.Cycle:
|
|
// Positions specified past the ends of the curve will wrap around to the opposite side of the Curve.
|
|
|
|
|
|
position -= timeSpan * countWraps(position);
|
|
|
|
return this.interpolate((position));
|
|
|
|
|
|
|
|
case CurveLoopType.CycleOffset:
|
|
//Positions specified past the ends of the curv will wrap around to the opposite side of the Curve.
|
|
//The value will be offset by the difference between the values of the first and last CurveKey
|
|
//multiplied by the number of times the position wraps around. If the position is before the first
|
|
//point in the Curve, the difference will be subtracted from its value; otherwise, the difference
|
|
//will be added
|
|
wraps = countWraps(position);
|
|
float difference = (this.keys[this.keys.Count - 1].Value - this.keys[0].Value) * wraps;
|
|
|
|
position -= timeSpan * countWraps(position);
|
|
|
|
return this.interpolate(position) + difference;
|
|
|
|
case CurveLoopType.Oscillate:
|
|
//Positions specified past the ends of the Curve act as an offset from the same side of the Curve
|
|
//toward the opposite side.
|
|
wraps = -countWraps(position);
|
|
|
|
if (wraps % 2 == 1)
|
|
{
|
|
return this.interpolate(lastPosition - position + firstPosition - (wraps * timeSpan));
|
|
}
|
|
return this.interpolate(position + (wraps * timeSpan));
|
|
}
|
|
}
|
|
//wanted point behind last point
|
|
else if (position > last.Position)
|
|
{
|
|
switch (this.PostLoop)
|
|
{
|
|
case CurveLoopType.Constant:
|
|
//The Curve will evaluate to its first key for positions before the first point in the Curve and to
|
|
//the last key for positions after the last point.
|
|
return last.Value;
|
|
|
|
case CurveLoopType.Linear:
|
|
//Linear interpolation will be performed to determine the value.
|
|
return last.Value + last.TangentOut * (position - last.Position);
|
|
|
|
case CurveLoopType.Cycle:
|
|
// Positions specified past the ends of the curve will wrap around to the opposite side of the Curve.
|
|
position -= timeSpan * countWraps(position);
|
|
|
|
return this.interpolate((position));
|
|
|
|
|
|
|
|
case CurveLoopType.CycleOffset:
|
|
//Positions specified past the ends of the curve will wrap around to the opposite side of the Curve.
|
|
//The value will be offset by the difference between the values of the first and last CurveKey
|
|
//multiplied by the number of times the position wraps around. If the position is before the first
|
|
//point in the Curve, the difference will be subtracted from its value; otherwise, the difference
|
|
//will be added.
|
|
wraps = countWraps(position);
|
|
float difference = (this.keys[this.keys.Count - 1].Value - this.keys[0].Value) * wraps;
|
|
|
|
position -= timeSpan * countWraps(position);
|
|
|
|
return this.interpolate(position) + difference;
|
|
|
|
case CurveLoopType.Oscillate:
|
|
//Positions specified past the ends of the Curve act as an offset from the same side of the Curve
|
|
//toward the opposite side.
|
|
wraps = -countWraps(position);
|
|
position += timeSpan * wraps;
|
|
if (wraps % 2 == 1)
|
|
{
|
|
return this.interpolate(lastPosition - position + firstPosition - (wraps * timeSpan));
|
|
}
|
|
return this.interpolate(position + (wraps * timeSpan));
|
|
}
|
|
}
|
|
|
|
//in curve
|
|
return interpolate(position);
|
|
|
|
}
|
|
private int countWraps(float position)
|
|
{
|
|
float wraps = (position - keys[0].Position) / (keys[keys.Count - 1].Position - keys[0].Position);
|
|
if (wraps < 0) wraps--;
|
|
return (int)wraps;
|
|
}
|
|
|
|
private float interpolate(float position)
|
|
{
|
|
//interpolate inside the curve with cubic hermite:
|
|
http://forums.create.msdn.com/forums/p/53392/323814.aspx
|
|
|
|
|
|
//assume position is inside curve
|
|
CurveKey a = this.keys[0];
|
|
CurveKey b;
|
|
for (int i = 1; i < this.keys.Count; ++i)
|
|
{
|
|
b = this.Keys[i];
|
|
if (b.Position >= position)
|
|
{
|
|
//stepping
|
|
if (a.Continuity == CurveContinuity.Step)
|
|
{
|
|
if (position == b.Position)
|
|
{
|
|
return b.Position;
|
|
}
|
|
return a.Value;
|
|
|
|
}
|
|
//smooth
|
|
//get the location between a and b in [0,1]
|
|
float moment = (position - a.Position) / (b.Position - a.Position);
|
|
return MathHelper.Hermite(a.Value, a.TangentOut, b.Value, b.TangentOut, moment);
|
|
|
|
}
|
|
//get next pair
|
|
a = b;
|
|
}
|
|
return 0f;
|
|
}
|
|
|
|
}
|
|
}
|