/* csvorbis * Copyright (C) 2000 ymnk, JCraft,Inc. * * Written by: 2000 ymnk<ymnk@jcraft.com> * Ported to C# from JOrbis by: Mark Crichton <crichton@gimp.org> * * Thanks go to the JOrbis team, for licencing the code under the * LGPL, making my job a lot easier. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public License * as published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ using System; using System.Runtime.CompilerServices; using csogg; namespace csvorbis { class Mdct { //static private float cPI3_8=0.38268343236508977175f; //static private float cPI2_8=0.70710678118654752441f; //static private float cPI1_8=0.92387953251128675613f; int n; int log2n; float[] trig; int[] bitrev; float scale; internal void init(int n) { bitrev=new int[n/4]; trig=new float[n+n/4]; int n2=(int)((uint)n >> 1); log2n=(int)Math.Round(Math.Log(n)/Math.Log(2)); this.n=n; int AE=0; int AO=1; int BE=AE+n/2; int BO=BE+1; int CE=BE+n/2; int CO=CE+1; // trig lookups... for(int i=0;i<n/4;i++) { trig[AE+i*2]=(float)Math.Cos((Math.PI/n)*(4*i)); trig[AO+i*2]=(float)-Math.Sin((Math.PI/n)*(4*i)); trig[BE+i*2]=(float)Math.Cos((Math.PI/(2*n))*(2*i+1)); trig[BO+i*2]=(float)Math.Sin((Math.PI/(2*n))*(2*i+1)); } for(int i=0;i<n/8;i++) { trig[CE+i*2]=(float)Math.Cos((Math.PI/n)*(4*i+2)); trig[CO+i*2]=(float)-Math.Sin((Math.PI/n)*(4*i+2)); } { int mask=(1<<(log2n-1))-1; int msb=1<<(log2n-2); for(int i=0;i<n/8;i++) { int acc=0; for(int j=0; (((uint)msb) >> j) != 0; j++) if(((((uint)msb>>j))&i) != 0) acc |= 1 << j; bitrev[i*2]=((~acc)&mask); // bitrev[i*2]=((~acc)&mask)-1; bitrev[i*2+1]=acc; } } scale=4.0f/n; } internal void clear() { } internal void forward(float[] fin, float[] fout) { } float[] _x=new float[1024]; float[] _w=new float[1024]; [MethodImpl(MethodImplOptions.Synchronized)] internal void backward(float[] fin, float[] fout) { if(_x.Length < n/2){_x=new float[n/2];} if(_w.Length < n/2){_w=new float[n/2];} float[] x=_x; float[] w=_w; int n2=(int)((uint)n >> 1); int n4=(int)((uint)n >> 2); int n8=(int)((uint)n >> 3); // rotate + step 1 { int inO=1; int xO=0; int A=n2; int i; for(i=0;i<n8;i++) { A-=2; x[xO++]=-fin[inO+2]*trig[A+1] - fin[inO]*trig[A]; x[xO++]= fin[inO]*trig[A+1] - fin[inO+2]*trig[A]; inO+=4; } inO=n2-4; for(i=0;i<n8;i++) { A-=2; x[xO++]=fin[inO]*trig[A+1] + fin[inO+2]*trig[A]; x[xO++]=fin[inO]*trig[A] - fin[inO+2]*trig[A+1]; inO-=4; } } float[] xxx=mdct_kernel(x,w,n,n2,n4,n8); int xx=0; // step 8 { int B=n2; int o1=n4,o2=o1-1; int o3=n4+n2,o4=o3-1; for(int i=0;i<n4;i++) { float temp1= (xxx[xx] * trig[B+1] - xxx[xx+1] * trig[B]); float temp2=-(xxx[xx] * trig[B] + xxx[xx+1] * trig[B+1]); fout[o1]=-temp1; fout[o2]= temp1; fout[o3]= temp2; fout[o4]= temp2; o1++; o2--; o3++; o4--; xx+=2; B+=2; } } } internal float[] mdct_kernel(float[] x, float[] w, int n, int n2, int n4, int n8) { // step 2 int xA=n4; int xB=0; int w2=n4; int A=n2; for(int i=0;i<n4;) { float x0=x[xA] - x[xB]; float x1; w[w2+i]=x[xA++]+x[xB++]; x1=x[xA]-x[xB]; A-=4; w[i++]= x0 * trig[A] + x1 * trig[A+1]; w[i]= x1 * trig[A] - x0 * trig[A+1]; w[w2+i]=x[xA++]+x[xB++]; i++; } // step 3 { for(int i=0;i<log2n-3;i++) { int k0=(int)((uint)n >> (i+2)); int k1=1 << (i+3); int wbase=n2-2; A=0; float[] temp; for(int r=0; r<((uint)k0>>2); r++) { int w1=wbase; w2=w1-(k0>>1); float AEv= trig[A],wA; float AOv= trig[A+1],wB; wbase-=2; k0++; for(int s=0;s<(2<<i);s++) { wB =w[w1] -w[w2]; x[w1] =w[w1] +w[w2]; wA =w[++w1] -w[++w2]; x[w1] =w[w1] +w[w2]; x[w2] =wA*AEv - wB*AOv; x[w2-1]=wB*AEv + wA*AOv; w1-=k0; w2-=k0; } k0--; A+=k1; } temp=w; w=x; x=temp; } } // step 4, 5, 6, 7 { int C=n; int bit=0; int x1=0; int x2=n2-1; for(int i=0;i<n8;i++) { int t1=bitrev[bit++]; int t2=bitrev[bit++]; float wA=w[t1]-w[t2+1]; float wB=w[t1-1]+w[t2]; float wC=w[t1]+w[t2+1]; float wD=w[t1-1]-w[t2]; float wACE=wA* trig[C]; float wBCE=wB* trig[C++]; float wACO=wA* trig[C]; float wBCO=wB* trig[C++]; x[x1++]=( wC+wACO+wBCE)*.5f; x[x2--]=(-wD+wBCO-wACE)*.5f; x[x1++]=( wD+wBCO-wACE)*.5f; x[x2--]=( wC-wACO-wBCE)*.5f; } } return(x); } } }