/* csvorbis * Copyright (C) 2000 ymnk, JCraft,Inc. * * Written by: 2000 ymnk<ymnk@jcraft.com> * Ported to C# from JOrbis by: Mark Crichton <crichton@gimp.org> * * Thanks go to the JOrbis team, for licencing the code under the * LGPL, making my job a lot easier. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public License * as published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ using System; using csogg; using csvorbis; namespace csvorbis { public class DspState { static float M_PI=3.1415926539f; static int VI_TRANSFORMB=1; static int VI_WINDOWB=1; internal int analysisp; internal Info vi; internal int modebits; float[][] pcm; //float[][] pcmret; int pcm_storage; int pcm_current; int pcm_returned; float[] multipliers; int envelope_storage; int envelope_current; int eofflag; int lW; int W; int nW; int centerW; long granulepos; public long sequence; long glue_bits; long time_bits; long floor_bits; long res_bits; // local lookup storage //!! Envelope ve=new Envelope(); // envelope //float **window[2][2][2]; // block, leadin, leadout, type internal float[][][][][] wnd; // block, leadin, leadout, type //vorbis_look_transform **transform[2]; // block, type internal Object[][] transform; internal CodeBook[] fullbooks; // backend lookups are tied to the mode, not the backend or naked mapping internal Object[] mode; // local storage, only used on the encoding side. This way the // application does not need to worry about freeing some packets' // memory and not others'; packet storage is always tracked. // Cleared next call to a _dsp_ function byte[] header; byte[] header1; byte[] header2; public DspState() { transform=new Object[2][]; wnd=new float[2][][][][]; wnd[0]=new float[2][][][]; wnd[0][0]=new float[2][][]; wnd[0][1]=new float[2][][]; wnd[0][0][0]=new float[2][]; wnd[0][0][1]=new float[2][]; wnd[0][1][0]=new float[2][]; wnd[0][1][1]=new float[2][]; wnd[1]=new float[2][][][]; wnd[1][0]=new float[2][][]; wnd[1][1]=new float[2][][]; wnd[1][0][0]=new float[2][]; wnd[1][0][1]=new float[2][]; wnd[1][1][0]=new float[2][]; wnd[1][1][1]=new float[2][]; } private static int ilog2(int v) { int ret=0; while(v>1) { ret++; v = (int)((uint)v >> 1); } return(ret); } internal static float[] window(int type, int wnd, int left, int right) { float[] ret=new float[wnd]; switch(type) { case 0: // The 'vorbis window' (window 0) is sin(sin(x)*sin(x)*2pi) { int leftbegin=wnd/4-left/2; int rightbegin=wnd-wnd/4-right/2; for(int i=0;i<left;i++) { float x=(float)((i+.5)/left*M_PI/2.0); x=(float)Math.Sin(x); x*=x; x*=(float)(M_PI/2.0); x=(float)Math.Sin(x); ret[i+leftbegin]=x; } for(int i=leftbegin+left;i<rightbegin;i++) { ret[i]=1.0f; } for(int i=0;i<right;i++) { float x=(float)((right-i-.5)/right*M_PI/2.0); x=(float)Math.Sin(x); x*=x; x*=(float)(M_PI/2.0); x=(float)Math.Sin(x); ret[i+rightbegin]=x; } } break; default: //free(ret); return(null); } return(ret); } // Analysis side code, but directly related to blocking. Thus it's // here and not in analysis.c (which is for analysis transforms only). // The init is here because some of it is shared int init(Info vi, bool encp) { //memset(v,0,sizeof(vorbis_dsp_state)); this.vi=vi; modebits=ilog2(vi.modes); transform[0]=new Object[VI_TRANSFORMB]; transform[1]=new Object[VI_TRANSFORMB]; // MDCT is tranform 0 transform[0][0]=new Mdct(); transform[1][0]=new Mdct(); ((Mdct)transform[0][0]).init(vi.blocksizes[0]); ((Mdct)transform[1][0]).init(vi.blocksizes[1]); wnd[0][0][0]=new float[VI_WINDOWB][]; wnd[0][0][1]=wnd[0][0][0]; wnd[0][1][0]=wnd[0][0][0]; wnd[0][1][1]=wnd[0][0][0]; wnd[1][0][0]=new float[VI_WINDOWB][]; wnd[1][0][1]=new float[VI_WINDOWB][]; wnd[1][1][0]=new float[VI_WINDOWB][]; wnd[1][1][1]=new float[VI_WINDOWB][]; for(int i=0;i<VI_WINDOWB;i++) { wnd[0][0][0][i]= window(i,vi.blocksizes[0],vi.blocksizes[0]/2,vi.blocksizes[0]/2); wnd[1][0][0][i]= window(i,vi.blocksizes[1],vi.blocksizes[0]/2,vi.blocksizes[0]/2); wnd[1][0][1][i]= window(i,vi.blocksizes[1],vi.blocksizes[0]/2,vi.blocksizes[1]/2); wnd[1][1][0][i]= window(i,vi.blocksizes[1],vi.blocksizes[1]/2,vi.blocksizes[0]/2); wnd[1][1][1][i]= window(i,vi.blocksizes[1],vi.blocksizes[1]/2,vi.blocksizes[1]/2); } // if(encp){ // encode/decode differ here // // finish the codebooks // fullbooks=new CodeBook[vi.books]; // for(int i=0;i<vi.books;i++){ // fullbooks[i]=new CodeBook(); // fullbooks[i].init_encode(vi.book_param[i]); // } // analysisp=1; // } // else{ // finish the codebooks fullbooks=new CodeBook[vi.books]; for(int i=0;i<vi.books;i++) { fullbooks[i]=new CodeBook(); fullbooks[i].init_decode(vi.book_param[i]); } // } // initialize the storage vectors to a decent size greater than the // minimum pcm_storage=8192; // we'll assume later that we have // a minimum of twice the blocksize of // accumulated samples in analysis pcm=new float[vi.channels][]; //pcmret=new float[vi.channels][]; { for(int i=0;i<vi.channels;i++) { pcm[i]=new float[pcm_storage]; } } // all 1 (large block) or 0 (small block) // explicitly set for the sake of clarity lW=0; // previous window size W=0; // current window size // all vector indexes; multiples of samples_per_envelope_step centerW=vi.blocksizes[1]/2; pcm_current=centerW; // initialize all the mapping/backend lookups mode=new Object[vi.modes]; for(int i=0;i<vi.modes;i++) { int mapnum=vi.mode_param[i].mapping; int maptype=vi.map_type[mapnum]; mode[i]=FuncMapping.mapping_P[maptype].look(this,vi.mode_param[i], vi.map_param[mapnum]); } return(0); } public int synthesis_init(Info vi) { init(vi, false); // Adjust centerW to allow an easier mechanism for determining output pcm_returned=centerW; centerW-= vi.blocksizes[W]/4+vi.blocksizes[lW]/4; granulepos=-1; sequence=-1; return(0); } DspState(Info vi) : this() { init(vi, false); // Adjust centerW to allow an easier mechanism for determining output pcm_returned=centerW; centerW-= vi.blocksizes[W]/4+vi.blocksizes[lW]/4; granulepos=-1; sequence=-1; } // Unike in analysis, the window is only partially applied for each // block. The time domain envelope is not yet handled at the point of // calling (as it relies on the previous block). public int synthesis_blockin(Block vb) { // Shift out any PCM/multipliers that we returned previously // centerW is currently the center of the last block added if(centerW>vi.blocksizes[1]/2 && pcm_returned>8192) { // don't shift too much; we need to have a minimum PCM buffer of // 1/2 long block int shiftPCM=centerW-vi.blocksizes[1]/2; shiftPCM=(pcm_returned<shiftPCM?pcm_returned:shiftPCM); pcm_current-=shiftPCM; centerW-=shiftPCM; pcm_returned-=shiftPCM; if(shiftPCM!=0) { for(int i=0;i<vi.channels;i++) { Array.Copy(pcm[i], shiftPCM, pcm[i], 0, pcm_current); } } } lW=W; W=vb.W; nW=-1; glue_bits+=vb.glue_bits; time_bits+=vb.time_bits; floor_bits+=vb.floor_bits; res_bits+=vb.res_bits; if(sequence+1 != vb.sequence)granulepos=-1; // out of sequence; lose count sequence=vb.sequence; { int sizeW=vi.blocksizes[W]; int _centerW=centerW+vi.blocksizes[lW]/4+sizeW/4; int beginW=_centerW-sizeW/2; int endW=beginW+sizeW; int beginSl=0; int endSl=0; // Do we have enough PCM/mult storage for the block? if(endW>pcm_storage) { // expand the storage pcm_storage=endW+vi.blocksizes[1]; for(int i=0;i<vi.channels;i++) { float[] foo=new float[pcm_storage]; Array.Copy(pcm[i], 0, foo, 0, pcm[i].Length); pcm[i]=foo; } } // overlap/add PCM switch(W) { case 0: beginSl=0; endSl=vi.blocksizes[0]/2; break; case 1: beginSl=vi.blocksizes[1]/4-vi.blocksizes[lW]/4; endSl=beginSl+vi.blocksizes[lW]/2; break; } for(int j=0;j<vi.channels;j++) { int _pcm=beginW; // the overlap/add section int i=0; for(i=beginSl;i<endSl;i++) { pcm[j][_pcm+i]+=vb.pcm[j][i]; } // the remaining section for(;i<sizeW;i++) { pcm[j][_pcm+i]=vb.pcm[j][i]; } } // track the frame number... This is for convenience, but also // making sure our last packet doesn't end with added padding. If // the last packet is partial, the number of samples we'll have to // return will be past the vb->granulepos. // // This is not foolproof! It will be confused if we begin // decoding at the last page after a seek or hole. In that case, // we don't have a starting point to judge where the last frame // is. For this reason, vorbisfile will always try to make sure // it reads the last two marked pages in proper sequence if(granulepos==-1) { granulepos=vb.granulepos; } else { granulepos+=(_centerW-centerW); if(vb.granulepos!=-1 && granulepos!=vb.granulepos) { if(granulepos>vb.granulepos && vb.eofflag!=0) { // partial last frame. Strip the padding off _centerW = _centerW - (int)(granulepos-vb.granulepos); }// else{ Shouldn't happen *unless* the bitstream is out of // spec. Either way, believe the bitstream } granulepos=vb.granulepos; } } // Update, cleanup centerW=_centerW; pcm_current=endW; if(vb.eofflag!=0)eofflag=1; } return(0); } // pcm==NULL indicates we just want the pending samples, no more public int synthesis_pcmout(float[][][] _pcm, int[] index) { if(pcm_returned<centerW) { if(_pcm!=null) { for(int i=0;i<vi.channels;i++) { // pcmret[i]=pcm[i]+v.pcm_returned; //!!!!!!!! index[i]=pcm_returned; } _pcm[0]=pcm; } return(centerW-pcm_returned); } return(0); } public int synthesis_read(int bytes) { if(bytes!=0 && pcm_returned+bytes>centerW)return(-1); pcm_returned+=bytes; return(0); } public void clear() { } } }