
x86 Software Reverse-Engineering, Cracking,

and Counter-Measures

X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
ISBN: 1394199880
Copyright Dazzle Cat Duo LLC

Lab: Hello, World (of RE)
Environment Needed:

- Linux Virtual Machine (recommend Ubuntu)

- Nasm (sudo apt-get install nasm)

1. Open a Terminal Window

2. Type the command: cd ~/<path where you saved the lab downloads>

3. In this folder you should two files (check with the command ls):

a. helloworld.asm

b. Makefile

4. Check out the content of helloworld.asm:

a. Command: gedit helloworld.asm

5. We’re using int 0x80 to request the OS write a string:

x86 Software Reverse-Engineering, Cracking,

and Counter-Measures

X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
ISBN: 1394199880
Copyright Dazzle Cat Duo LLC

6. We’re storing the string “Hello World!” in the data section.

7. First, we will build helloworld.asm manually. Run the following 2 commands:
a. nasm -f elf32 -g helloworld.asm

b. ld -melf_i386 -g helloworld.o -o helloworld.out

8. You should now see two new files (check with the command ls):

a. helloworld.o

b. helloworld.out

9. Now let’s run our helloworld application:

a. Command: ./helloworld.out

10. Success!!

11. Building manually is tedious… let’s use a Makefile to automate it!

a. Makefiles are not a programming thing, they are a Linux way of grouping commands.

b. Check out the content of Makefile.

i. Command: gedit Makefile

c. The Makefile automates the build process.

d. Running the command make will build and link our assembly.

e. make clean will remove the output files.

12. Run the command make clean to remove the manually built files.

a. Use ls to verify they are gone.

x86 Software Reverse-Engineering, Cracking,

and Counter-Measures

X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
ISBN: 1394199880
Copyright Dazzle Cat Duo LLC

13. Run the command make to rebuild our application.

14. Execute the new helloworld:

a. Command: ./helloworld.out

15. Let’s finish by examining the contents of the executable that we created.

a. First, try opening the executable in your favorite text editor; for example:
gedit helloworld.out

b. What happens? The contents of the file look like mostly gibberish. That is because the

executable file does not contain the assembly instructions that we first typed – after

building our assembly program into an executable, the executable now only contains

machine code (and some symbols to help the OS navigate the machine code).

c. To examine the file in a human-readable way, we need to translate the machine code

back into assembly. We can do this with the tool objdump. Objdump the executable to

translate its machine code into (somewhat) human readable x86:
objdump -d -Mintel helloworld.out

16. Carefully compare the disassembled code to the code that we originally built. What are the

similarities? What are the differences?

a. Takeaway: building a program into machine code is a lossy process – some of the

original information and programmer intent is lost. When we try to go the reverse

direction – recovering assembly code from machine code – we can get good results, but

not perfect. Without the original programmer annotations, symbol names, and other

metadata, it becomes much harder to read and interpret the assembly. This is where

reverse engineering comes in.

