
X86 SOFTWARE REVERSE-ENGINEERING, CRACKING, AND COUNTER-MEASURES

X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
ISBN: 139419988 Copyright Dazzle Cat Duo, LLC

Lab:	ProcMon	
Environment	

• Windows Virtual Machine
• IDA
• ProcMon
Links for the required tools are available in the repository under the ‘tools’ directory.

Target	
• Dark Basic Pro

Provided in the ‘target’ directory.

Outline	
1. Dark-Basic-Pro was a popular tool for creating Windows video games. It contains several different licensing

schemes. We previously explored the CD authenticity check and the Serial check in the software. In this lab,
we will determine how the software checks for installed licenses.

2. First, examine the target folder with TGCTrial.exe. What else is in this folder? What licenses are currently
installed for the application? What is stored in the license file?

3. Launch Process Monitor (ProcMon). Using the buttons at the top of ProcMon (), ensure that it is capturing
process information.

4. Run TGTrial.exe. Go to ProcMon, and use the buttons at the top to stop capturing process information.
5. ProcMon will likely have thousands of system and library calls captured at this point. Like everything in

reverse-engineering, we need some way to find the pieces that actually matter. Click the Filter button in
ProcMon.

6. We’re interested in how the target application is processing the license files, so consider what kinds of
things we might filter for in ProcMon. Filter by Process Name (“is” “TGCTrial.exe”) and Path (“contains”
“certificates”).

7. Scroll to find the first time the process accesses the installed certificate.

8. Double click this entry to pull up additional information from this call. Navigate to the “stack” tab to find the

call stack for this call. The top (most recent) several entries will all be inside various Windows libraries, but
we are only interested in when the target (TGCTrial) made the initial call to access the file. Scroll down to
the first line with TGCTrial on it. This tells us exactly where in the code the target tried to access the license
file.

9. Make note of the address of the call (in the above example, offset 0x1eae).

X86 SOFTWARE REVERSE-ENGINEERING, CRACKING, AND COUNTER-MEASURES

X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
ISBN: 139419988 Copyright Dazzle Cat Duo, LLC

10. Open IDA, and load TGCTrial into IDA.
11. We want to find the code accessing the license file. We have an address from ProcMon, but we need to

translate this a bit in order to translate it to IDA’s view. Scroll to the top of the main IDA view, and make
note of the .text section virtual address (0x1000 in the below example) and the first address of the .text
section shown on the left (0x401000 in the below example, but may be different after you’ve launched the
debugger).

12. Using the call offset from ProcMon and the .text addresses, navigate to the call location in the program. In
the above example, you can press “g” for “goto” in IDA, then enter, without quotes, “0x401000-
0x1000+0x1eae” (IDA can perform basic arithmetic in calculating a go-to address).

13. You should recognize “DATE” and “PRODUCT” as strings from the license file.
14. Without any code analysis, we’ve successfully found the point responsible for license checks in the product.

Task	1	
Dark Basic Pro supports many different licenses for a wide variety of plugins and addons. The included license
gives access to a few features, which are listed when we launch TGCTrial.exe:

X86 SOFTWARE REVERSE-ENGINEERING, CRACKING, AND COUNTER-MEASURES

X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
ISBN: 139419988 Copyright Dazzle Cat Duo, LLC

Starting from the code we identified in the introduction, use IDA and its debugger to find a way to generate a
license for an additional product.

Hints:
• Hints are available at the end of this document. Try the challenge without using hints first, you will

encounter and overcome many more of the inherent challenges of the tooling and reversing process this
way.

Optional	Bonus	Tasks	
Automatically find all possible license names.

• IDA script is a scripting language built into IDA.
• After you set a breakpoint, you can right click it to edit it.
• One of the fields in the breakpoint window is a breakpoint condition.
• The breakpoint condition determines if the debugger will pause on the breakpoint. But the condition is

actually just a snippet of IDA script, and can be used for more than just conditions.
• Set a breakpoint on the “strcmp” call that precedes the GetPrivateProfileStringA call. It looks like the

following, though your specific offsets may vary. IDA may not recognize the subfunction as a strcmp,
giving it instead a generic name like “sub_123456”.

• Set the breakpoint condition to “print(“X”) && 0” without quotes). This will always evaluate to false, so

IDA will not pause on the breakpoint. However, in the process of evaluating the condition, IDA will print
“X” each time the breakpoint is hit.

• Explore the IDA scripting functions to find a way to fetch strings from memory. Using the current
program registers at the breakpoint, can you get IDA to automatically print the names of the license files
as they are checked?

Find a way to unexpire your licenses, without modifying the program.
• Some of the licenses found in Task 1 may be expired (if you have no expired license, try setting the clock

in your VM forward by a year and re-running the program).
• The target is looking for an obfuscated timestamp in the registry.
• Use ProcMon to find the registry logic. This will lead you to the timestamp obfuscation logic.
• Decipher the timestamp obfuscation method with IDA and reverse engineering.
• Add a valid obfuscated timestamp to your registry and license file to undo the license expiration.

X86 SOFTWARE REVERSE-ENGINEERING, CRACKING, AND COUNTER-MEASURES

X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
ISBN: 139419988 Copyright Dazzle Cat Duo, LLC

Task	1	Hints	
Tip: Use hints sequentially; once you’ve unblocked yourself, try to continue without using the subsequent hints.

• Don’t get lost in the weeds, the problem can be largely solved without a detailed analysis of specific
assembly instructions. Focus on the high-level flow of the code around the “GetPrivateProfileStringA”
call.

• Use the debugger to try single stepping through the function that calls “GetPrivateProfileStringA”. Use
the “step-over” functionality in the debugger to avoid entering into subfunctions, so that we can stay
focused on only this function and not get lost in the details of libraries and helper functions. As you step
through, keep an eye on register values as they’re being used, and hover over them to see if they point
to anything interesting in memory.

• Tracing backwards from GetPrivateProfileStringA, is there a code path that can skip this block? What
condition will skip GetPrivateProfileStringA? What determines this condition (recall that functions
return their result in the eax register).

• Locate and place a breakpoint this call prior to the GetPrivateProfileStringA function. Run until this
breakpoint is hit (restart your program if the breakpoint is missed).

• Hover over EDI and EAX once the breakpoint is triggered. What do they point to? Do you recognize one

of them? (Think back to the lab outline, and the contents of the license file).
• Follow EDI to memory, and right click to create a string at this location.

• This could be the name of a license file the target is searching for. Without modifying the program, how
might we create a new, mostly correct license with this name?

