
x86 Software Reverse-Engineering, Cracking,

and Counter-Measures

X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
ISBN: 1394199880
Copyright Dazzle Cat Duo LLC

Lab: Shark Sim 3000

Environment Needed:

- Linux Virtual Machine (Recommended Ubuntu)

- Nasm (sudo apt-get install nasm)
Links for any tools are available in the github under ‘Tools’

Overview

• For your project, you've spent thousands of

hours crafting the most terrifying, realistic shark

simulation the world has ever seen – all in the

x86 assembly program on the right! There's just

one problem – the project is due in an hour, but

the program is seg faulting!!! You'll need to

debug the code to save your reputation and

unleash the greatest game of all time – Shark

Sim 3000!

• For this lab, follow the given instructions exactly.

Caution

• This lab will have you enter gdb commands to

watch the program as it executes. There is no

“undo” for many of these commands. If you

make a mistake, you will likely have to start over.

• It is critical that all steps are followed, in order.

Do not skip any steps; do not rush; do not make

mistakes or typos. Read each instruction, and

follow it carefully.

; shark sim 3000

USE32
section .data
s: times 20 db 7eh
 db 5eh, 7eh, 0dh
.L equ $-s

section .text
global _start
_start:
 mov esi, s.L-1
.p:
 mov ebx, 1
 mov ecx, s+s.L
 sub ecx, esi
 mov edx, esi
 mov eax, 4
 int 80

 mov ecx, [0xfffffff]
 loop $

 dec esi
 jnz .p

 mov ebx, 0
 mov eax, 1
 int 80

x86 Software Reverse-Engineering, Cracking,

and Counter-Measures

X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
ISBN: 1394199880
Copyright Dazzle Cat Duo LLC

Reference

• Remember, GDB is the GNU Debugger; it is a powerful debugger that can be used for

analyzing both C and x86.

• The following GDB commands are used in this lab:

o breakpoint (b) – set a breakpoint

o run – run the program

o continue (c) – continue executing a program after it paused at a breakpoint

o info reg – examine the processor registers

o info file – examine file details

o x – examine memory

o quit (q) – quit GDB

• If at any time you cannot remember a command, or do not understand a command’s

syntax, you can use

o help – list overview for all commands

o help <command> – get help on specific command

• In GDB, you can usually use a shorthand form of a command, if it does not conflict with

any other commands. For example, “b” is short for “breakpoint”; “disas” can be used

instead of “disassemble”.

Building

• Locate the file called “shark_sim_3000.asm” in your directory.

o The “asm” extension is used to denote assembly source code files.

o It is important the code is exactly as it appears in this document.

▪ Seriously. Exactly. Don’t modify it. Be careful.

• Spend a few minutes looking over this code. Try to understand the basics of what the

code is doing.

o eax, ebx, ecx, edx, and esi are registers – they hold 32 bit values, stored and

manipulated by electronic circuitry built directly into the processor.

o “mov”, “sub” and “dec” manipulate the registers.

o “jnz”, “loop”, and “int” jump to different locations.

• Assemble this code into an object file with the following command:

o nasm –f elf shark_sim_3000.asm

o This uses the nasm assembler to translate the assembly code into machine code,

with additional information that can later be used to create an executable file.

x86 Software Reverse-Engineering, Cracking,

and Counter-Measures

X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
ISBN: 1394199880
Copyright Dazzle Cat Duo LLC

o The output is in the “elf” format, the standard object format on UNIX and Linux.

o This will create a file called “shark_sim_3000.o” in your directory.

• Link the object into an executable file, with the following command:

o ld –o shark_sim_3000 –melf_i386 –s shark_sim_3000.o

o This creates an executable file called “shark_sim_3000” in your directory.

• Examine the raw assembly code from the executable to see what it will do:

o objdump –Mintel –d shark_sim_3000

o This will disassemble the file and show you its contents

o You could do this with any executable, from any language, on any architecture,

to see exactly what that program will do when it is run.

• Run the executable:

o ./shark_sim_3000

• The execution seg faults! We need to fix the code, so we will use GDB to analyze the

program as it runs.

Debugging

• Load the executable into GDB:

o gdb shark_sim_3000

• Type the following command to change to Intel x86 syntax:

o (gdb) set disassembly-flavor intel

• Type the following command to automatically display the next line of assembly:

o (gdb) set disassemble-next-line on

• The code for your program sits in memory at a certain address. Find out what address

your code starts at:

o (gdb) info file

o Look for “Entry point:”, followed by a hexadecimal address, like “0x8048080”

• Set a breakpoint on the program entry point, using the address you observed in the

previous step:

o (gdb) break *0x8048080

o This will pause the program when the program begins.

• Start running the program:

o (gdb) run

• Due to the breakpoint, the program will pause immediately when it starts to run.

x86 Software Reverse-Engineering, Cracking,

and Counter-Measures

X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
ISBN: 1394199880
Copyright Dazzle Cat Duo LLC

• Now we want to know what instruction the processor is about to execute. The “eip”

register (the extended instruction pointer) holds an address of (“points to”) the machine

code for the upcoming instruction. Determine the contents of the eip register:

o (gdb) info reg eip

o GDB will report the value in the eip register

▪ eip 0x8048080 0x8048080

• Let’s examine the memory pointed to by eip. The “x” command lets us examine

memory. Learn a little more about “x”:

o (gdb) help x

• Use x to examine the machine code the processor is about to run:

o (gdb) x/8xb $eip

o This will show you the actual stream of bytes that will flow through the

processor, to cause it to execute a machine instruction.

• As humans, we’re not much good at reading machine code. Let’s look at the same thing

as assembly instructions instead:

o (gdb) x/20i $eip

o You should recognize the code from the lab. The first lines initialize and

manipulate some registers.

o The first line should look like

▪ => 0x08048080: mov esi, 0x16

▪ The arrow indicates that address 0x08048080 is where the instruction

pointer is pointing; this is the next line of assembly that the processor will

execute.

• Let exactly one assembly instruction execute:

o (gdb) stepi

o GDB should print:

▪ => 0x08048085: bb 01 00 00 00 mov ebx, 0x1

▪ The previous instruction (mov esi, 0x16) has executed.

▪ The printed instruction is the next instruction that will execute.

• Press enter to run this instruction.

o (gdb) <enter>

▪ => 0x0804808a: b9 cb 90 04 08 mov ecx,0x80490cb

x86 Software Reverse-Engineering, Cracking,

and Counter-Measures

X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
ISBN: 1394199880
Copyright Dazzle Cat Duo LLC

Error 1

• Continue pressing enter; this will rerun the last gdb command (in this case, stepi); this is

called single stepping the program. Stop at address 0x08048098.

o => 0x08048080: be 16 00 00 00 mov esi,0x16

o => 0x08048085: bb 01 00 00 00 mov ebx,0x1

o => 0x0804808a: b9 cb 90 04 08 mov ecx,0x80490cb

o => 0x0804808f: 29 f1 sub ecx,esi

o => 0x08048091: 89 f2 mov edx,esi

o => 0x08048093: b8 04 00 00 00 mov eax,0x4

o => 0x08048098: cd 50 int 0x50

• The “int” instruction will call into the operating system to do something for us. In this

case, we are asking the OS to print the string pointed to by the ecx register. Examine

the memory pointed to by the ecx register, as a string:

o (gdb) x/s $ecx

• Allow the “int” instruction to execute:

o (gdb) si

• The instruction will cause a segmentation fault, so the operating system will terminate

your program.

• Check the problematic instruction in the original source code:

o int 80

• Check the problematic instruction from gdb:

o int 0x50

• Although these look different, they are the same. 80 is in decimal, and 0x50 is in

hexadecimal – we are looking at the same number in two different bases. Skilled

programmers know that “int eighty” calls into the operating system on Linux, but when

they say “eighty”, they mean “hexadecimal eighty”. By writing “int 80” in our source

code, we used the wrong base. This might be the cause of our segfault!

• Exit gdb:

o (gdb) quit

• Fix the “int 80” lines in the assembly code, by changing them to “int 0x80”. There are

two lines that must be fixed.

• Reassemble and relink your program.

• Run the program:

o ./shark_sim_3000

x86 Software Reverse-Engineering, Cracking,

and Counter-Measures

X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
ISBN: 1394199880
Copyright Dazzle Cat Duo LLC

• We still have a seg fault.

Error 2

• Reload your program into gdb, set gdb to use Intel syntax, and turn on next line

disassembly.

o If you add these commands to your ~/.gdbinit file, you will not have to retype

them every time you launch gdb.

• We want to pick up where we left off, so set a breakpoint on the last instruction we

reached:

o (gdb) b *0x08048098

• Run the program.

• It will pause when it hits the breakpoint. Notice that the instruction has changed since

last time:

o => 0x08048098: cd 80 int 0x80

• Clear the breakpoint:

o (gdb) delete 1

• Step one instruction.

• The “int 0x80” instruction successfully runs.

• Continue execution (allow the program to run from the current location) to determine

where the next seg fault is:

o (gdb) continue

o => 0x0804809a: 8b 0d ff ff ff 0f mov ecx,DWORD PTR ds:0xfffffff

• This instruction copies data from the memory at address 0xfffffff into register ecx.

• Check the data at address 0xfffffff to determine what is being copied into ecx:

o (gdb) x *0xfffffff

• gdb will tell you that it cannot access this memory. That’s exactly what causes a seg

fault! Trying to access memory that does not belong to your code is a security violation,

and usually a programming error – that’s why the operating system terminates your

program when it catches your mistake.

• The programmer didn’t mean to use the memory at 0xfffffff, they meant to use the

value 0xfffffff. In C, this is the difference between “*ptr” and “ptr” – “ptr” is a value,

“*ptr” is the memory at that value. In assembly, we write “[x]” to access the memory at

address x, and “x” to access the value x.

• Exit gdb:

x86 Software Reverse-Engineering, Cracking,

and Counter-Measures

X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
ISBN: 1394199880
Copyright Dazzle Cat Duo LLC

o (gdb) q

• Fix the code by changing the seg faulting line so that it moves the value 0xfffffff into the

ecx register, instead of moving the memory at address 0xfffffff into the ecx register.

Conclusion

• Reassemble and relink your program.

• Run the finished program to experience the revolutionary ultra-realistic shark sim:

o ./shark_sim_3000

• Now that it’s working, shark_sim_3000 is destined to be a smashing commercial

success. But to protect your intellectual property (and the untold millions you are

bound to make off of this), you should refresh yourself on the program internals, one

last time.

• Use the techniques from this lab to determine the following information, it will help in

your mastery of x86.

• Single step through the “loop $” instruction, and use the “info reg” command to

evaluate its execution. What does the “loop $” instruction do? What do you think its

purpose is in this situation?

• What is the value of esi the first time the “jnz .p” instruction is executed?

• What is the value of esi the second time the “jnz .p” instruction is executed?

• What is the value of esi immediately before the final int 0x80 instruction is executed?

• What do you think esi is being used for in this program?

• Learning to quickly make inferences like this regarding the purposes of different

instructions and registers is the heart of reverse engineering and software cracking!

 Source: iusedtobescaredofcats.blogspot.com

