1
0
mirror of https://github.com/EduApps-CDG/OpenDX synced 2024-12-30 09:45:37 +01:00
OpenDX/src/dxvk/dxvk_graphics.cpp
Joshua Ashton c39c3e8dcc [dxvk] Hook up platform-specific clock
See 89dfa2bc22577c758cb8badd34e4f177192a6eff
2019-11-26 01:52:58 +01:00

554 lines
23 KiB
C++

#include "../util/util_time.h"
#include "dxvk_device.h"
#include "dxvk_graphics.h"
#include "dxvk_pipemanager.h"
#include "dxvk_spec_const.h"
#include "dxvk_state_cache.h"
namespace dxvk {
DxvkGraphicsPipeline::DxvkGraphicsPipeline(
DxvkPipelineManager* pipeMgr,
DxvkGraphicsPipelineShaders shaders)
: m_vkd(pipeMgr->m_device->vkd()), m_pipeMgr(pipeMgr),
m_shaders(std::move(shaders)) {
if (m_shaders.vs != nullptr) m_shaders.vs ->defineResourceSlots(m_slotMapping);
if (m_shaders.tcs != nullptr) m_shaders.tcs->defineResourceSlots(m_slotMapping);
if (m_shaders.tes != nullptr) m_shaders.tes->defineResourceSlots(m_slotMapping);
if (m_shaders.gs != nullptr) m_shaders.gs ->defineResourceSlots(m_slotMapping);
if (m_shaders.fs != nullptr) m_shaders.fs ->defineResourceSlots(m_slotMapping);
m_slotMapping.makeDescriptorsDynamic(
pipeMgr->m_device->options().maxNumDynamicUniformBuffers,
pipeMgr->m_device->options().maxNumDynamicStorageBuffers);
m_layout = new DxvkPipelineLayout(m_vkd,
m_slotMapping, VK_PIPELINE_BIND_POINT_GRAPHICS);
m_vsIn = m_shaders.vs != nullptr ? m_shaders.vs->interfaceSlots().inputSlots : 0;
m_fsOut = m_shaders.fs != nullptr ? m_shaders.fs->interfaceSlots().outputSlots : 0;
if (m_shaders.gs != nullptr && m_shaders.gs->flags().test(DxvkShaderFlag::HasTransformFeedback))
m_flags.set(DxvkGraphicsPipelineFlag::HasTransformFeedback);
if (m_layout->getStorageDescriptorStages())
m_flags.set(DxvkGraphicsPipelineFlag::HasStorageDescriptors);
m_common.msSampleShadingEnable = m_shaders.fs != nullptr && m_shaders.fs->flags().test(DxvkShaderFlag::HasSampleRateShading);
m_common.msSampleShadingFactor = 1.0f;
}
DxvkGraphicsPipeline::~DxvkGraphicsPipeline() {
for (const auto& instance : m_pipelines)
this->destroyPipeline(instance.pipeline());
}
Rc<DxvkShader> DxvkGraphicsPipeline::getShader(
VkShaderStageFlagBits stage) const {
switch (stage) {
case VK_SHADER_STAGE_VERTEX_BIT: return m_shaders.vs;
case VK_SHADER_STAGE_GEOMETRY_BIT: return m_shaders.gs;
case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT: return m_shaders.tcs;
case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT: return m_shaders.tes;
case VK_SHADER_STAGE_FRAGMENT_BIT: return m_shaders.fs;
default:
return nullptr;
}
}
VkPipeline DxvkGraphicsPipeline::getPipelineHandle(
const DxvkGraphicsPipelineStateInfo& state,
const DxvkRenderPass* renderPass) {
DxvkGraphicsPipelineInstance* instance = nullptr;
{ std::lock_guard<sync::Spinlock> lock(m_mutex);
instance = this->findInstance(state, renderPass);
if (instance)
return instance->pipeline();
instance = this->createInstance(state, renderPass);
}
if (!instance)
return VK_NULL_HANDLE;
this->writePipelineStateToCache(state, renderPass->format());
return instance->pipeline();
}
void DxvkGraphicsPipeline::compilePipeline(
const DxvkGraphicsPipelineStateInfo& state,
const DxvkRenderPass* renderPass) {
std::lock_guard<sync::Spinlock> lock(m_mutex);
if (!this->findInstance(state, renderPass))
this->createInstance(state, renderPass);
}
DxvkGraphicsPipelineInstance* DxvkGraphicsPipeline::createInstance(
const DxvkGraphicsPipelineStateInfo& state,
const DxvkRenderPass* renderPass) {
// If the pipeline state vector is invalid, don't try
// to create a new pipeline, it won't work anyway.
if (!this->validatePipelineState(state))
return nullptr;
VkPipeline newPipelineHandle = this->createPipeline(state, renderPass);
m_pipeMgr->m_numGraphicsPipelines += 1;
return &m_pipelines.emplace_back(state, renderPass, newPipelineHandle);
}
DxvkGraphicsPipelineInstance* DxvkGraphicsPipeline::findInstance(
const DxvkGraphicsPipelineStateInfo& state,
const DxvkRenderPass* renderPass) {
for (auto& instance : m_pipelines) {
if (instance.isCompatible(state, renderPass))
return &instance;
}
return nullptr;
}
VkPipeline DxvkGraphicsPipeline::createPipeline(
const DxvkGraphicsPipelineStateInfo& state,
const DxvkRenderPass* renderPass) const {
if (Logger::logLevel() <= LogLevel::Debug) {
Logger::debug("Compiling graphics pipeline...");
this->logPipelineState(LogLevel::Debug, state);
}
// Render pass format and image layouts
DxvkRenderPassFormat passFormat = renderPass->format();
// Set up dynamic states as needed
std::array<VkDynamicState, 6> dynamicStates;
uint32_t dynamicStateCount = 0;
dynamicStates[dynamicStateCount++] = VK_DYNAMIC_STATE_VIEWPORT;
dynamicStates[dynamicStateCount++] = VK_DYNAMIC_STATE_SCISSOR;
if (state.useDynamicDepthBias())
dynamicStates[dynamicStateCount++] = VK_DYNAMIC_STATE_DEPTH_BIAS;
if (state.useDynamicDepthBounds())
dynamicStates[dynamicStateCount++] = VK_DYNAMIC_STATE_DEPTH_BOUNDS;
if (state.useDynamicBlendConstants())
dynamicStates[dynamicStateCount++] = VK_DYNAMIC_STATE_BLEND_CONSTANTS;
if (state.useDynamicStencilRef())
dynamicStates[dynamicStateCount++] = VK_DYNAMIC_STATE_STENCIL_REFERENCE;
// Figure out the actual sample count to use
VkSampleCountFlagBits sampleCount = VK_SAMPLE_COUNT_1_BIT;
if (state.ms.sampleCount())
sampleCount = VkSampleCountFlagBits(state.ms.sampleCount());
else if (state.rs.sampleCount())
sampleCount = VkSampleCountFlagBits(state.rs.sampleCount());
// Set up some specialization constants
DxvkSpecConstants specData;
specData.set(uint32_t(DxvkSpecConstantId::RasterizerSampleCount), sampleCount, VK_SAMPLE_COUNT_1_BIT);
for (uint32_t i = 0; i < m_layout->bindingCount(); i++)
specData.set(i, state.bsBindingMask.test(i), true);
for (uint32_t i = 0; i < MaxNumRenderTargets; i++) {
if ((m_fsOut & (1 << i)) != 0) {
uint32_t specId = uint32_t(DxvkSpecConstantId::ColorComponentMappings) + 4 * i;
specData.set(specId + 0, state.omSwizzle[i].rIndex(), 0u);
specData.set(specId + 1, state.omSwizzle[i].gIndex(), 1u);
specData.set(specId + 2, state.omSwizzle[i].bIndex(), 2u);
specData.set(specId + 3, state.omSwizzle[i].aIndex(), 3u);
}
}
for (uint32_t i = 0; i < MaxNumSpecConstants; i++)
specData.set(getSpecId(i), state.sc.specConstants[i], 0u);
VkSpecializationInfo specInfo = specData.getSpecInfo();
auto vsm = createShaderModule(m_shaders.vs, state);
auto tcsm = createShaderModule(m_shaders.tcs, state);
auto tesm = createShaderModule(m_shaders.tes, state);
auto gsm = createShaderModule(m_shaders.gs, state);
auto fsm = createShaderModule(m_shaders.fs, state);
std::vector<VkPipelineShaderStageCreateInfo> stages;
if (vsm) stages.push_back(vsm.stageInfo(&specInfo));
if (tcsm) stages.push_back(tcsm.stageInfo(&specInfo));
if (tesm) stages.push_back(tesm.stageInfo(&specInfo));
if (gsm) stages.push_back(gsm.stageInfo(&specInfo));
if (fsm) stages.push_back(fsm.stageInfo(&specInfo));
// Fix up color write masks using the component mappings
std::array<VkPipelineColorBlendAttachmentState, MaxNumRenderTargets> omBlendAttachments;
const VkColorComponentFlags fullMask
= VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT
| VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT;
for (uint32_t i = 0; i < MaxNumRenderTargets; i++) {
omBlendAttachments[i] = state.omBlend[i].state();
if (omBlendAttachments[i].colorWriteMask != fullMask) {
omBlendAttachments[i].colorWriteMask = util::remapComponentMask(
state.omBlend[i].colorWriteMask(), state.omSwizzle[i].mapping());
}
if ((m_fsOut & (1 << i)) == 0)
omBlendAttachments[i].colorWriteMask = 0;
}
// Generate per-instance attribute divisors
std::array<VkVertexInputBindingDivisorDescriptionEXT, MaxNumVertexBindings> viDivisorDesc;
uint32_t viDivisorCount = 0;
for (uint32_t i = 0; i < state.il.bindingCount(); i++) {
if (state.ilBindings[i].inputRate() == VK_VERTEX_INPUT_RATE_INSTANCE
&& state.ilBindings[i].divisor() != 1) {
const uint32_t id = viDivisorCount++;
viDivisorDesc[id].binding = i; /* see below */
viDivisorDesc[id].divisor = state.ilBindings[i].divisor();
}
}
int32_t rasterizedStream = m_shaders.gs != nullptr
? m_shaders.gs->shaderOptions().rasterizedStream
: 0;
// Compact vertex bindings so that we can more easily update vertex buffers
std::array<VkVertexInputAttributeDescription, MaxNumVertexAttributes> viAttribs;
std::array<VkVertexInputBindingDescription, MaxNumVertexBindings> viBindings;
std::array<uint32_t, MaxNumVertexBindings> viBindingMap = { };
for (uint32_t i = 0; i < state.il.bindingCount(); i++) {
viBindings[i] = state.ilBindings[i].description();
viBindings[i].binding = i;
viBindingMap[state.ilBindings[i].binding()] = i;
}
for (uint32_t i = 0; i < state.il.attributeCount(); i++) {
viAttribs[i] = state.ilAttributes[i].description();
viAttribs[i].binding = viBindingMap[state.ilAttributes[i].binding()];
}
VkPipelineVertexInputDivisorStateCreateInfoEXT viDivisorInfo;
viDivisorInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_DIVISOR_STATE_CREATE_INFO_EXT;
viDivisorInfo.pNext = nullptr;
viDivisorInfo.vertexBindingDivisorCount = viDivisorCount;
viDivisorInfo.pVertexBindingDivisors = viDivisorDesc.data();
VkPipelineVertexInputStateCreateInfo viInfo;
viInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
viInfo.pNext = &viDivisorInfo;
viInfo.flags = 0;
viInfo.vertexBindingDescriptionCount = state.il.bindingCount();
viInfo.pVertexBindingDescriptions = viBindings.data();
viInfo.vertexAttributeDescriptionCount = state.il.attributeCount();
viInfo.pVertexAttributeDescriptions = viAttribs.data();
if (viDivisorCount == 0)
viInfo.pNext = viDivisorInfo.pNext;
// TODO remove this once the extension is widely supported
if (!m_pipeMgr->m_device->features().extVertexAttributeDivisor.vertexAttributeInstanceRateDivisor)
viInfo.pNext = viDivisorInfo.pNext;
VkPipelineInputAssemblyStateCreateInfo iaInfo;
iaInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
iaInfo.pNext = nullptr;
iaInfo.flags = 0;
iaInfo.topology = state.ia.primitiveTopology();
iaInfo.primitiveRestartEnable = state.ia.primitiveRestart();
VkPipelineTessellationStateCreateInfo tsInfo;
tsInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_STATE_CREATE_INFO;
tsInfo.pNext = nullptr;
tsInfo.flags = 0;
tsInfo.patchControlPoints = state.ia.patchVertexCount();
VkPipelineViewportStateCreateInfo vpInfo;
vpInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
vpInfo.pNext = nullptr;
vpInfo.flags = 0;
vpInfo.viewportCount = state.rs.viewportCount();
vpInfo.pViewports = nullptr;
vpInfo.scissorCount = state.rs.viewportCount();
vpInfo.pScissors = nullptr;
VkPipelineRasterizationStateStreamCreateInfoEXT xfbStreamInfo;
xfbStreamInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_STREAM_CREATE_INFO_EXT;
xfbStreamInfo.pNext = nullptr;
xfbStreamInfo.flags = 0;
xfbStreamInfo.rasterizationStream = uint32_t(rasterizedStream);
VkPipelineRasterizationDepthClipStateCreateInfoEXT rsDepthClipInfo;
rsDepthClipInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_DEPTH_CLIP_STATE_CREATE_INFO_EXT;
rsDepthClipInfo.pNext = nullptr;
rsDepthClipInfo.flags = 0;
rsDepthClipInfo.depthClipEnable = state.rs.depthClipEnable();
VkPipelineRasterizationStateCreateInfo rsInfo;
rsInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
rsInfo.pNext = &rsDepthClipInfo;
rsInfo.flags = 0;
rsInfo.depthClampEnable = VK_TRUE;
rsInfo.rasterizerDiscardEnable = rasterizedStream < 0;
rsInfo.polygonMode = state.rs.polygonMode();
rsInfo.cullMode = state.rs.cullMode();
rsInfo.frontFace = state.rs.frontFace();
rsInfo.depthBiasEnable = state.rs.depthBiasEnable();
rsInfo.depthBiasConstantFactor= 0.0f;
rsInfo.depthBiasClamp = 0.0f;
rsInfo.depthBiasSlopeFactor = 0.0f;
rsInfo.lineWidth = 1.0f;
if (rasterizedStream > 0)
rsDepthClipInfo.pNext = &xfbStreamInfo;
if (!m_pipeMgr->m_device->features().extDepthClipEnable.depthClipEnable) {
rsInfo.pNext = rsDepthClipInfo.pNext;
rsInfo.depthClampEnable = !state.rs.depthClipEnable();
}
uint32_t sampleMask = state.ms.sampleMask();
VkPipelineMultisampleStateCreateInfo msInfo;
msInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
msInfo.pNext = nullptr;
msInfo.flags = 0;
msInfo.rasterizationSamples = sampleCount;
msInfo.sampleShadingEnable = m_common.msSampleShadingEnable;
msInfo.minSampleShading = m_common.msSampleShadingFactor;
msInfo.pSampleMask = &sampleMask;
msInfo.alphaToCoverageEnable = state.ms.enableAlphaToCoverage();
msInfo.alphaToOneEnable = VK_FALSE;
VkPipelineDepthStencilStateCreateInfo dsInfo;
dsInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO;
dsInfo.pNext = nullptr;
dsInfo.flags = 0;
dsInfo.depthTestEnable = state.ds.enableDepthTest();
dsInfo.depthWriteEnable = state.ds.enableDepthWrite() && !util::isDepthReadOnlyLayout(passFormat.depth.layout);
dsInfo.depthCompareOp = state.ds.depthCompareOp();
dsInfo.depthBoundsTestEnable = state.ds.enableDepthBoundsTest();
dsInfo.stencilTestEnable = state.ds.enableStencilTest();
dsInfo.front = state.dsFront.state();
dsInfo.back = state.dsBack.state();
dsInfo.minDepthBounds = 0.0f;
dsInfo.maxDepthBounds = 1.0f;
VkPipelineColorBlendStateCreateInfo cbInfo;
cbInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
cbInfo.pNext = nullptr;
cbInfo.flags = 0;
cbInfo.logicOpEnable = state.om.enableLogicOp();
cbInfo.logicOp = state.om.logicOp();
cbInfo.attachmentCount = DxvkLimits::MaxNumRenderTargets;
cbInfo.pAttachments = omBlendAttachments.data();
for (uint32_t i = 0; i < 4; i++)
cbInfo.blendConstants[i] = 0.0f;
VkPipelineDynamicStateCreateInfo dyInfo;
dyInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
dyInfo.pNext = nullptr;
dyInfo.flags = 0;
dyInfo.dynamicStateCount = dynamicStateCount;
dyInfo.pDynamicStates = dynamicStates.data();
VkGraphicsPipelineCreateInfo info;
info.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
info.pNext = nullptr;
info.flags = 0;
info.stageCount = stages.size();
info.pStages = stages.data();
info.pVertexInputState = &viInfo;
info.pInputAssemblyState = &iaInfo;
info.pTessellationState = &tsInfo;
info.pViewportState = &vpInfo;
info.pRasterizationState = &rsInfo;
info.pMultisampleState = &msInfo;
info.pDepthStencilState = &dsInfo;
info.pColorBlendState = &cbInfo;
info.pDynamicState = &dyInfo;
info.layout = m_layout->pipelineLayout();
info.renderPass = renderPass->getDefaultHandle();
info.subpass = 0;
info.basePipelineHandle = VK_NULL_HANDLE;
info.basePipelineIndex = -1;
if (tsInfo.patchControlPoints == 0)
info.pTessellationState = nullptr;
// Time pipeline compilation for debugging purposes
dxvk::high_resolution_clock::time_point t0, t1;
if (Logger::logLevel() <= LogLevel::Debug)
t0 = dxvk::high_resolution_clock::now();
VkPipeline pipeline = VK_NULL_HANDLE;
if (m_vkd->vkCreateGraphicsPipelines(m_vkd->device(),
m_pipeMgr->m_cache->handle(), 1, &info, nullptr, &pipeline) != VK_SUCCESS) {
Logger::err("DxvkGraphicsPipeline: Failed to compile pipeline");
this->logPipelineState(LogLevel::Error, state);
return VK_NULL_HANDLE;
}
if (Logger::logLevel() <= LogLevel::Debug) {
t1 = dxvk::high_resolution_clock::now();
auto td = std::chrono::duration_cast<std::chrono::milliseconds>(t1 - t0);
Logger::debug(str::format("DxvkGraphicsPipeline: Finished in ", td.count(), " ms"));
}
return pipeline;
}
void DxvkGraphicsPipeline::destroyPipeline(VkPipeline pipeline) const {
m_vkd->vkDestroyPipeline(m_vkd->device(), pipeline, nullptr);
}
DxvkShaderModule DxvkGraphicsPipeline::createShaderModule(
const Rc<DxvkShader>& shader,
const DxvkGraphicsPipelineStateInfo& state) const {
if (shader == nullptr)
return DxvkShaderModule();
DxvkShaderModuleCreateInfo info;
// Fix up fragment shader outputs for dual-source blending
if (shader->stage() == VK_SHADER_STAGE_FRAGMENT_BIT) {
info.fsDualSrcBlend = state.omBlend[0].blendEnable() && (
util::isDualSourceBlendFactor(state.omBlend[0].srcColorBlendFactor()) ||
util::isDualSourceBlendFactor(state.omBlend[0].dstColorBlendFactor()) ||
util::isDualSourceBlendFactor(state.omBlend[0].srcAlphaBlendFactor()) ||
util::isDualSourceBlendFactor(state.omBlend[0].dstAlphaBlendFactor()));
}
// Deal with undefined shader inputs
uint32_t consumedInputs = shader->interfaceSlots().inputSlots;
uint32_t providedInputs = 0;
if (shader->stage() == VK_SHADER_STAGE_VERTEX_BIT) {
for (uint32_t i = 0; i < state.il.attributeCount(); i++)
providedInputs |= 1u << state.ilAttributes[i].location();
} else if (shader->stage() != VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT) {
auto prevStage = getPrevStageShader(shader->stage());
providedInputs = prevStage->interfaceSlots().outputSlots;
} else {
// Technically not correct, but this
// would need a lot of extra care
providedInputs = consumedInputs;
}
info.undefinedInputs = (providedInputs & consumedInputs) ^ consumedInputs;
return shader->createShaderModule(m_vkd, m_slotMapping, info);
}
Rc<DxvkShader> DxvkGraphicsPipeline::getPrevStageShader(VkShaderStageFlagBits stage) const {
if (stage == VK_SHADER_STAGE_VERTEX_BIT)
return nullptr;
if (stage == VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT)
return m_shaders.tcs;
Rc<DxvkShader> result = m_shaders.vs;
if (stage == VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT)
return result;
if (m_shaders.tes != nullptr)
result = m_shaders.tes;
if (stage == VK_SHADER_STAGE_GEOMETRY_BIT)
return result;
if (m_shaders.gs != nullptr)
result = m_shaders.gs;
return result;
}
bool DxvkGraphicsPipeline::validatePipelineState(
const DxvkGraphicsPipelineStateInfo& state) const {
// Tessellation shaders and patches must be used together
bool hasPatches = state.ia.primitiveTopology() == VK_PRIMITIVE_TOPOLOGY_PATCH_LIST;
bool hasTcs = m_shaders.tcs != nullptr;
bool hasTes = m_shaders.tes != nullptr;
if (hasPatches != hasTcs || hasPatches != hasTes)
return false;
// Filter out undefined primitive topologies
if (state.ia.primitiveTopology() == VK_PRIMITIVE_TOPOLOGY_MAX_ENUM)
return false;
// Prevent unintended out-of-bounds access to the IL arrays
if (state.il.attributeCount() > DxvkLimits::MaxNumVertexAttributes
|| state.il.bindingCount() > DxvkLimits::MaxNumVertexBindings)
return false;
// No errors
return true;
}
void DxvkGraphicsPipeline::writePipelineStateToCache(
const DxvkGraphicsPipelineStateInfo& state,
const DxvkRenderPassFormat& format) const {
if (m_pipeMgr->m_stateCache == nullptr)
return;
DxvkStateCacheKey key;
if (m_shaders.vs != nullptr) key.vs = m_shaders.vs->getShaderKey();
if (m_shaders.tcs != nullptr) key.tcs = m_shaders.tcs->getShaderKey();
if (m_shaders.tes != nullptr) key.tes = m_shaders.tes->getShaderKey();
if (m_shaders.gs != nullptr) key.gs = m_shaders.gs->getShaderKey();
if (m_shaders.fs != nullptr) key.fs = m_shaders.fs->getShaderKey();
m_pipeMgr->m_stateCache->addGraphicsPipeline(key, state, format);
}
void DxvkGraphicsPipeline::logPipelineState(
LogLevel level,
const DxvkGraphicsPipelineStateInfo& state) const {
if (m_shaders.vs != nullptr) Logger::log(level, str::format(" vs : ", m_shaders.vs ->debugName()));
if (m_shaders.tcs != nullptr) Logger::log(level, str::format(" tcs : ", m_shaders.tcs->debugName()));
if (m_shaders.tes != nullptr) Logger::log(level, str::format(" tes : ", m_shaders.tes->debugName()));
if (m_shaders.gs != nullptr) Logger::log(level, str::format(" gs : ", m_shaders.gs ->debugName()));
if (m_shaders.fs != nullptr) Logger::log(level, str::format(" fs : ", m_shaders.fs ->debugName()));
for (uint32_t i = 0; i < state.il.attributeCount(); i++) {
const auto& attr = state.ilAttributes[i];
Logger::log(level, str::format(" attr ", i, " : location ", attr.location(), ", binding ", attr.binding(), ", format ", attr.format(), ", offset ", attr.offset()));
}
for (uint32_t i = 0; i < state.il.bindingCount(); i++) {
const auto& bind = state.ilBindings[i];
Logger::log(level, str::format(" binding ", i, " : binding ", bind.binding(), ", stride ", bind.stride(), ", rate ", bind.inputRate(), ", divisor ", bind.divisor()));
}
// TODO log more pipeline state
}
}