1
0
mirror of https://github.com/EduApps-CDG/OpenDX synced 2024-12-30 09:45:37 +01:00
OpenDX/src/dxvk/dxvk_state_cache.cpp
Philip Rebohle cd00719122
[dxvk] Tweak number of pipeline compiler threads
Gives some 6-core and 8-core CPUs a bit more breathing room, while
also supporting up to 32 workers instead of just 16 to leverage
the new high core count Ryzen CPUs.
2020-01-09 18:04:25 +01:00

1013 lines
30 KiB
C++

#include "dxvk_device.h"
#include "dxvk_pipemanager.h"
#include "dxvk_state_cache.h"
namespace dxvk {
static const Sha1Hash g_nullHash = Sha1Hash::compute(nullptr, 0);
static const DxvkShaderKey g_nullShaderKey = DxvkShaderKey();
/**
* \brief Packed entry header
*/
struct DxvkStateCacheEntryHeader {
uint32_t stageMask : 8;
uint32_t entrySize : 24;
};
/**
* \brief State cache entry data
*
* Stores data for a single cache entry and
* provides convenience methods to access it.
*/
class DxvkStateCacheEntryData {
constexpr static size_t MaxSize = 1024;
public:
size_t size() const {
return m_size;
}
const char* data() const {
return m_data;
}
Sha1Hash computeHash() const {
return Sha1Hash::compute(m_data, m_size);
}
template<typename T>
bool read(T& data) {
if (m_read + sizeof(T) > m_size)
return false;
std::memcpy(&data, &m_data[m_read], sizeof(T));
m_read += sizeof(T);
return true;
}
template<typename T>
bool write(const T& data) {
if (m_size + sizeof(T) > MaxSize)
return false;
std::memcpy(&m_data[m_size], &data, sizeof(T));
m_size += sizeof(T);
return true;
}
bool readFromStream(std::istream& stream, size_t size) {
if (size > MaxSize)
return false;
if (!stream.read(m_data, size))
return false;
m_size = size;
m_read = 0;
return true;
}
private:
size_t m_size = 0;
size_t m_read = 0;
char m_data[MaxSize];
};
template<typename T>
bool readCacheEntryTyped(std::istream& stream, T& entry) {
auto data = reinterpret_cast<char*>(&entry);
auto size = sizeof(entry);
if (!stream.read(data, size))
return false;
Sha1Hash expectedHash = std::exchange(entry.hash, g_nullHash);
Sha1Hash computedHash = Sha1Hash::compute(entry);
return expectedHash == computedHash;
}
bool DxvkStateCacheKey::eq(const DxvkStateCacheKey& key) const {
return this->vs.eq(key.vs)
&& this->tcs.eq(key.tcs)
&& this->tes.eq(key.tes)
&& this->gs.eq(key.gs)
&& this->fs.eq(key.fs)
&& this->cs.eq(key.cs);
}
size_t DxvkStateCacheKey::hash() const {
DxvkHashState hash;
hash.add(this->vs.hash());
hash.add(this->tcs.hash());
hash.add(this->tes.hash());
hash.add(this->gs.hash());
hash.add(this->fs.hash());
hash.add(this->cs.hash());
return hash;
}
DxvkStateCache::DxvkStateCache(
const DxvkDevice* device,
DxvkPipelineManager* pipeManager,
DxvkRenderPassPool* passManager)
: m_pipeManager(pipeManager),
m_passManager(passManager) {
bool newFile = !readCacheFile();
if (newFile) {
Logger::warn("DXVK: Creating new state cache file");
// Start with an empty file
std::ofstream file(getCacheFileName(),
std::ios_base::binary |
std::ios_base::trunc);
if (!file && env::createDirectory(getCacheDir())) {
file = std::ofstream(getCacheFileName(),
std::ios_base::binary |
std::ios_base::trunc);
}
// Write header with the current version number
DxvkStateCacheHeader header;
auto data = reinterpret_cast<const char*>(&header);
auto size = sizeof(header);
file.write(data, size);
// Write all valid entries to the cache file in
// case we're recovering a corrupted cache file
for (auto& e : m_entries)
writeCacheEntry(file, e);
}
// Use half the available CPU cores for pipeline compilation
uint32_t numCpuCores = dxvk::thread::hardware_concurrency();
uint32_t numWorkers = ((std::max(1u, numCpuCores) - 1) * 5) / 7;
if (numWorkers < 1) numWorkers = 1;
if (numWorkers > 32) numWorkers = 32;
if (device->config().numCompilerThreads > 0)
numWorkers = device->config().numCompilerThreads;
Logger::info(str::format("DXVK: Using ", numWorkers, " compiler threads"));
// Start the worker threads and the file writer
m_workerBusy.store(numWorkers);
for (uint32_t i = 0; i < numWorkers; i++) {
m_workerThreads.emplace_back([this] () { workerFunc(); });
m_workerThreads[i].set_priority(ThreadPriority::Lowest);
}
m_writerThread = dxvk::thread([this] () { writerFunc(); });
}
DxvkStateCache::~DxvkStateCache() {
{ std::lock_guard<std::mutex> workerLock(m_workerLock);
std::lock_guard<std::mutex> writerLock(m_writerLock);
m_stopThreads.store(true);
m_workerCond.notify_all();
m_writerCond.notify_all();
}
for (auto& worker : m_workerThreads)
worker.join();
m_writerThread.join();
}
void DxvkStateCache::addGraphicsPipeline(
const DxvkStateCacheKey& shaders,
const DxvkGraphicsPipelineStateInfo& state,
const DxvkRenderPassFormat& format) {
if (shaders.vs.eq(g_nullShaderKey))
return;
// Do not add an entry that is already in the cache
auto entries = m_entryMap.equal_range(shaders);
for (auto e = entries.first; e != entries.second; e++) {
const DxvkStateCacheEntry& entry = m_entries[e->second];
if (entry.format.eq(format) && entry.gpState == state)
return;
}
// Queue a job to write this pipeline to the cache
std::unique_lock<std::mutex> lock(m_writerLock);
m_writerQueue.push({ shaders, state,
DxvkComputePipelineStateInfo(),
format, g_nullHash });
m_writerCond.notify_one();
}
void DxvkStateCache::addComputePipeline(
const DxvkStateCacheKey& shaders,
const DxvkComputePipelineStateInfo& state) {
if (shaders.cs.eq(g_nullShaderKey))
return;
// Do not add an entry that is already in the cache
auto entries = m_entryMap.equal_range(shaders);
for (auto e = entries.first; e != entries.second; e++) {
if (m_entries[e->second].cpState == state)
return;
}
// Queue a job to write this pipeline to the cache
std::unique_lock<std::mutex> lock(m_writerLock);
m_writerQueue.push({ shaders,
DxvkGraphicsPipelineStateInfo(), state,
DxvkRenderPassFormat(), g_nullHash });
m_writerCond.notify_one();
}
void DxvkStateCache::registerShader(const Rc<DxvkShader>& shader) {
DxvkShaderKey key = shader->getShaderKey();
if (key.eq(g_nullShaderKey))
return;
// Add the shader so we can look it up by its key
std::unique_lock<std::mutex> entryLock(m_entryLock);
m_shaderMap.insert({ key, shader });
// Deferred lock, don't stall workers unless we have to
std::unique_lock<std::mutex> workerLock;
auto pipelines = m_pipelineMap.equal_range(key);
for (auto p = pipelines.first; p != pipelines.second; p++) {
WorkerItem item;
if (!getShaderByKey(p->second.vs, item.gp.vs)
|| !getShaderByKey(p->second.tcs, item.gp.tcs)
|| !getShaderByKey(p->second.tes, item.gp.tes)
|| !getShaderByKey(p->second.gs, item.gp.gs)
|| !getShaderByKey(p->second.fs, item.gp.fs)
|| !getShaderByKey(p->second.cs, item.cp.cs))
continue;
if (!workerLock)
workerLock = std::unique_lock<std::mutex>(m_workerLock);
m_workerQueue.push(item);
}
if (workerLock)
m_workerCond.notify_all();
}
DxvkShaderKey DxvkStateCache::getShaderKey(const Rc<DxvkShader>& shader) const {
return shader != nullptr ? shader->getShaderKey() : g_nullShaderKey;
}
bool DxvkStateCache::getShaderByKey(
const DxvkShaderKey& key,
Rc<DxvkShader>& shader) const {
if (key.eq(g_nullShaderKey))
return true;
auto entry = m_shaderMap.find(key);
if (entry == m_shaderMap.end())
return false;
shader = entry->second;
return true;
}
void DxvkStateCache::mapPipelineToEntry(
const DxvkStateCacheKey& key,
size_t entryId) {
m_entryMap.insert({ key, entryId });
}
void DxvkStateCache::mapShaderToPipeline(
const DxvkShaderKey& shader,
const DxvkStateCacheKey& key) {
if (!shader.eq(g_nullShaderKey))
m_pipelineMap.insert({ shader, key });
}
void DxvkStateCache::compilePipelines(const WorkerItem& item) {
DxvkStateCacheKey key;
key.vs = getShaderKey(item.gp.vs);
key.tcs = getShaderKey(item.gp.tcs);
key.tes = getShaderKey(item.gp.tes);
key.gs = getShaderKey(item.gp.gs);
key.fs = getShaderKey(item.gp.fs);
key.cs = getShaderKey(item.cp.cs);
if (item.cp.cs == nullptr) {
auto pipeline = m_pipeManager->createGraphicsPipeline(item.gp);
auto entries = m_entryMap.equal_range(key);
for (auto e = entries.first; e != entries.second; e++) {
const auto& entry = m_entries[e->second];
auto rp = m_passManager->getRenderPass(entry.format);
pipeline->compilePipeline(entry.gpState, rp);
}
} else {
auto pipeline = m_pipeManager->createComputePipeline(item.cp);
auto entries = m_entryMap.equal_range(key);
for (auto e = entries.first; e != entries.second; e++) {
const auto& entry = m_entries[e->second];
pipeline->compilePipeline(entry.cpState);
}
}
}
bool DxvkStateCache::readCacheFile() {
// Open state file and just fail if it doesn't exist
std::ifstream ifile(getCacheFileName(), std::ios_base::binary);
if (!ifile) {
Logger::warn("DXVK: No state cache file found");
return false;
}
// The header stores the state cache version,
// we need to regenerate it if it's outdated
DxvkStateCacheHeader newHeader;
DxvkStateCacheHeader curHeader;
if (!readCacheHeader(ifile, curHeader)) {
Logger::warn("DXVK: Failed to read state cache header");
return false;
}
// Struct size hasn't changed between v2 and v4
size_t expectedSize = newHeader.entrySize;
if (curHeader.version <= 4)
expectedSize = sizeof(DxvkStateCacheEntryV4);
else if (curHeader.version <= 5)
expectedSize = sizeof(DxvkStateCacheEntryV5);
else if (curHeader.version <= 6)
expectedSize = sizeof(DxvkStateCacheEntryV6);
else if (curHeader.version <= 7)
expectedSize = sizeof(DxvkStateCacheEntry);
if (curHeader.entrySize != expectedSize) {
Logger::warn("DXVK: State cache entry size changed");
return false;
}
// Discard caches of unsupported versions
if (curHeader.version < 2 || curHeader.version > newHeader.version) {
Logger::warn("DXVK: State cache version not supported");
return false;
}
// Notify user about format conversion
if (curHeader.version != newHeader.version)
Logger::warn(str::format("DXVK: Updating state cache version to v", newHeader.version));
// Read actual cache entries from the file.
// If we encounter invalid entries, we should
// regenerate the entire state cache file.
uint32_t numInvalidEntries = 0;
while (ifile) {
DxvkStateCacheEntry entry;
if (readCacheEntry(curHeader.version, ifile, entry)) {
size_t entryId = m_entries.size();
m_entries.push_back(entry);
mapPipelineToEntry(entry.shaders, entryId);
mapShaderToPipeline(entry.shaders.vs, entry.shaders);
mapShaderToPipeline(entry.shaders.tcs, entry.shaders);
mapShaderToPipeline(entry.shaders.tes, entry.shaders);
mapShaderToPipeline(entry.shaders.gs, entry.shaders);
mapShaderToPipeline(entry.shaders.fs, entry.shaders);
mapShaderToPipeline(entry.shaders.cs, entry.shaders);
} else if (ifile) {
numInvalidEntries += 1;
}
}
Logger::info(str::format(
"DXVK: Read ", m_entries.size(),
" valid state cache entries"));
if (numInvalidEntries) {
Logger::warn(str::format(
"DXVK: Skipped ", numInvalidEntries,
" invalid state cache entries"));
return false;
}
// Rewrite entire state cache if it is outdated
return curHeader.version == newHeader.version;
}
bool DxvkStateCache::readCacheHeader(
std::istream& stream,
DxvkStateCacheHeader& header) const {
DxvkStateCacheHeader expected;
auto data = reinterpret_cast<char*>(&header);
auto size = sizeof(header);
if (!stream.read(data, size))
return false;
for (uint32_t i = 0; i < 4; i++) {
if (expected.magic[i] != header.magic[i])
return false;
}
return true;
}
bool DxvkStateCache::readCacheEntryV7(
uint32_t version,
std::istream& stream,
DxvkStateCacheEntry& entry) const {
if (version <= 6) {
DxvkStateCacheEntryV6 v6;
if (version <= 4) {
DxvkStateCacheEntryV4 v4;
if (!readCacheEntryTyped(stream, v4))
return false;
if (version == 2)
convertEntryV2(v4);
if (!convertEntryV4(v4, v6))
return false;
} else if (version <= 5) {
DxvkStateCacheEntryV5 v5;
if (!readCacheEntryTyped(stream, v5))
return false;
if (!convertEntryV5(v5, v6))
return false;
} else {
if (!readCacheEntryTyped(stream, v6))
return false;
}
return convertEntryV6(v6, entry);
} else {
return readCacheEntryTyped(stream, entry);
}
}
bool DxvkStateCache::readCacheEntry(
uint32_t version,
std::istream& stream,
DxvkStateCacheEntry& entry) const {
if (version < 8)
return readCacheEntryV7(version, stream, entry);
// Read entry metadata and actual data
DxvkStateCacheEntryHeader header;
DxvkStateCacheEntryData data;
Sha1Hash hash;
if (!stream.read(reinterpret_cast<char*>(&header), sizeof(header))
|| !stream.read(reinterpret_cast<char*>(&hash), sizeof(hash))
|| !data.readFromStream(stream, header.entrySize))
return false;
// Validate hash, skip entry if invalid
if (hash != data.computeHash())
return false;
// Read shader hashes
VkShaderStageFlags stageMask = VkShaderStageFlags(header.stageMask);
auto keys = &entry.shaders.vs;
for (uint32_t i = 0; i < 6; i++) {
if (stageMask & VkShaderStageFlagBits(1 << i))
data.read(keys[i]);
else
keys[i] = g_nullShaderKey;
}
if (stageMask & VK_SHADER_STAGE_COMPUTE_BIT) {
if (!data.read(entry.cpState.bsBindingMask))
return false;
} else {
// Read packed render pass format
uint8_t sampleCount = 0;
uint8_t imageFormat = 0;
uint8_t imageLayout = 0;
if (!data.read(sampleCount)
|| !data.read(imageFormat)
|| !data.read(imageLayout))
return false;
entry.format.sampleCount = VkSampleCountFlagBits(sampleCount);
entry.format.depth.format = VkFormat(imageFormat);
entry.format.depth.layout = unpackImageLayout(imageLayout);
for (uint32_t i = 0; i < MaxNumRenderTargets; i++) {
if (!data.read(imageFormat)
|| !data.read(imageLayout))
return false;
entry.format.color[i].format = VkFormat(imageFormat);
entry.format.color[i].layout = unpackImageLayout(imageLayout);
}
if (!validateRenderPassFormat(entry.format))
return false;
// Read common pipeline state
if (!data.read(entry.gpState.bsBindingMask)
|| !data.read(entry.gpState.ia)
|| !data.read(entry.gpState.il)
|| !data.read(entry.gpState.rs)
|| !data.read(entry.gpState.ms)
|| !data.read(entry.gpState.ds)
|| !data.read(entry.gpState.om)
|| !data.read(entry.gpState.dsFront)
|| !data.read(entry.gpState.dsBack))
return false;
if (entry.gpState.il.attributeCount() > MaxNumVertexAttributes
|| entry.gpState.il.bindingCount() > MaxNumVertexBindings)
return false;
// Read render target swizzles
for (uint32_t i = 0; i < MaxNumRenderTargets; i++) {
if (!data.read(entry.gpState.omSwizzle[i]))
return false;
}
// Read render target blend info
for (uint32_t i = 0; i < MaxNumRenderTargets; i++) {
if (!data.read(entry.gpState.omBlend[i]))
return false;
}
// Read defined vertex attributes
for (uint32_t i = 0; i < entry.gpState.il.attributeCount(); i++) {
if (!data.read(entry.gpState.ilAttributes[i]))
return false;
}
// Read defined vertex bindings
for (uint32_t i = 0; i < entry.gpState.il.bindingCount(); i++) {
if (!data.read(entry.gpState.ilBindings[i]))
return false;
}
}
// Read non-zero spec constants
auto& sc = (stageMask & VK_SHADER_STAGE_COMPUTE_BIT)
? entry.cpState.sc
: entry.gpState.sc;
uint32_t specConstantMask = 0;
if (!data.read(specConstantMask))
return false;
for (uint32_t i = 0; i < MaxNumSpecConstants; i++) {
if (specConstantMask & (1 << i)) {
if (!data.read(sc.specConstants[i]))
return false;
}
}
return true;
}
void DxvkStateCache::writeCacheEntry(
std::ostream& stream,
DxvkStateCacheEntry& entry) const {
DxvkStateCacheEntryData data;
VkShaderStageFlags stageMask = 0;
// Write shader hashes
auto keys = &entry.shaders.vs;
for (uint32_t i = 0; i < 6; i++) {
if (!keys[i].eq(g_nullShaderKey)) {
stageMask |= VkShaderStageFlagBits(1 << i);
data.write(keys[i]);
}
}
if (stageMask & VK_SHADER_STAGE_COMPUTE_BIT) {
// Nothing else here to write out
data.write(entry.cpState.bsBindingMask);
} else {
// Pack render pass format
data.write(uint8_t(entry.format.sampleCount));
data.write(uint8_t(entry.format.depth.format));
data.write(packImageLayout(entry.format.depth.layout));
for (uint32_t i = 0; i < MaxNumRenderTargets; i++) {
data.write(uint8_t(entry.format.color[i].format));
data.write(packImageLayout(entry.format.color[i].layout));
}
// Write out common pipeline state
data.write(entry.gpState.bsBindingMask);
data.write(entry.gpState.ia);
data.write(entry.gpState.il);
data.write(entry.gpState.rs);
data.write(entry.gpState.ms);
data.write(entry.gpState.ds);
data.write(entry.gpState.om);
data.write(entry.gpState.dsFront);
data.write(entry.gpState.dsBack);
// Write out render target swizzles and blend info
for (uint32_t i = 0; i < MaxNumRenderTargets; i++)
data.write(entry.gpState.omSwizzle[i]);
for (uint32_t i = 0; i < MaxNumRenderTargets; i++)
data.write(entry.gpState.omBlend[i]);
// Write out input layout for defined attributes
for (uint32_t i = 0; i < entry.gpState.il.attributeCount(); i++)
data.write(entry.gpState.ilAttributes[i]);
for (uint32_t i = 0; i < entry.gpState.il.bindingCount(); i++)
data.write(entry.gpState.ilBindings[i]);
}
// Write out all non-zero spec constants
auto& sc = (stageMask & VK_SHADER_STAGE_COMPUTE_BIT)
? entry.cpState.sc
: entry.gpState.sc;
uint32_t specConstantMask = 0;
for (uint32_t i = 0; i < MaxNumSpecConstants; i++)
specConstantMask |= sc.specConstants[i] ? (1 << i) : 0;
data.write(specConstantMask);
for (uint32_t i = 0; i < MaxNumSpecConstants; i++) {
if (specConstantMask & (1 << i))
data.write(sc.specConstants[i]);
}
// General layout: header -> hash -> data
DxvkStateCacheEntryHeader header;
header.stageMask = uint8_t(stageMask);
header.entrySize = data.size();
Sha1Hash hash = data.computeHash();
stream.write(reinterpret_cast<char*>(&header), sizeof(header));
stream.write(reinterpret_cast<char*>(&hash), sizeof(hash));
stream.write(data.data(), data.size());
stream.flush();
}
bool DxvkStateCache::convertEntryV2(
DxvkStateCacheEntryV4& entry) const {
// Semantics changed:
// v2: rsDepthClampEnable
// v3: rsDepthClipEnable
entry.gpState.rsDepthClipEnable = !entry.gpState.rsDepthClipEnable;
// Frontend changed: Depth bias
// will typically be disabled
entry.gpState.rsDepthBiasEnable = VK_FALSE;
return true;
}
bool DxvkStateCache::convertEntryV4(
const DxvkStateCacheEntryV4& in,
DxvkStateCacheEntryV6& out) const {
out.shaders = in.shaders;
out.format = in.format;
out.hash = in.hash;
out.cpState.bsBindingMask = in.cpState.bsBindingMask;
out.gpState.bsBindingMask = in.gpState.bsBindingMask;
out.gpState.iaPrimitiveTopology = in.gpState.iaPrimitiveTopology;
out.gpState.iaPrimitiveRestart = in.gpState.iaPrimitiveRestart;
out.gpState.iaPatchVertexCount = in.gpState.iaPatchVertexCount;
out.gpState.ilAttributeCount = in.gpState.ilAttributeCount;
out.gpState.ilBindingCount = in.gpState.ilBindingCount;
for (uint32_t i = 0; i < in.gpState.ilAttributeCount; i++)
out.gpState.ilAttributes[i] = in.gpState.ilAttributes[i];
for (uint32_t i = 0; i < in.gpState.ilBindingCount; i++) {
out.gpState.ilBindings[i] = in.gpState.ilBindings[i];
out.gpState.ilDivisors[i] = in.gpState.ilDivisors[i];
}
out.gpState.rsDepthClipEnable = in.gpState.rsDepthClipEnable;
out.gpState.rsDepthBiasEnable = in.gpState.rsDepthBiasEnable;
out.gpState.rsPolygonMode = in.gpState.rsPolygonMode;
out.gpState.rsCullMode = in.gpState.rsCullMode;
out.gpState.rsFrontFace = in.gpState.rsFrontFace;
out.gpState.rsViewportCount = in.gpState.rsViewportCount;
out.gpState.rsSampleCount = in.gpState.rsSampleCount;
out.gpState.msSampleCount = in.gpState.msSampleCount;
out.gpState.msSampleMask = in.gpState.msSampleMask;
out.gpState.msEnableAlphaToCoverage = in.gpState.msEnableAlphaToCoverage;
out.gpState.dsEnableDepthTest = in.gpState.dsEnableDepthTest;
out.gpState.dsEnableDepthWrite = in.gpState.dsEnableDepthWrite;
out.gpState.dsEnableStencilTest = in.gpState.dsEnableStencilTest;
out.gpState.dsDepthCompareOp = in.gpState.dsDepthCompareOp;
out.gpState.dsStencilOpFront = in.gpState.dsStencilOpFront;
out.gpState.dsStencilOpBack = in.gpState.dsStencilOpBack;
out.gpState.omEnableLogicOp = in.gpState.omEnableLogicOp;
out.gpState.omLogicOp = in.gpState.omLogicOp;
for (uint32_t i = 0; i < 8; i++) {
out.gpState.omBlendAttachments[i] = in.gpState.omBlendAttachments[i];
out.gpState.omComponentMapping[i] = in.gpState.omComponentMapping[i];
}
return true;
}
bool DxvkStateCache::convertEntryV5(
const DxvkStateCacheEntryV5& in,
DxvkStateCacheEntryV6& out) const {
out.shaders = in.shaders;
out.gpState = in.gpState;
out.format = in.format;
out.hash = in.hash;
out.cpState.bsBindingMask = in.cpState.bsBindingMask;
return true;
}
bool DxvkStateCache::convertEntryV6(
const DxvkStateCacheEntryV6& in,
DxvkStateCacheEntry& out) const {
out.shaders = in.shaders;
out.format = in.format;
out.hash = in.hash;
if (in.shaders.cs.eq(g_nullShaderKey)) {
// Binding mask
out.gpState.bsBindingMask = in.gpState.bsBindingMask;
// Graphics state
out.gpState.ia = DxvkIaInfo(
in.gpState.iaPrimitiveTopology,
in.gpState.iaPrimitiveRestart,
in.gpState.iaPatchVertexCount);
out.gpState.il = DxvkIlInfo(
in.gpState.ilAttributeCount,
in.gpState.ilBindingCount);
for (uint32_t i = 0; i < in.gpState.ilAttributeCount; i++) {
out.gpState.ilAttributes[i] = DxvkIlAttribute(
in.gpState.ilAttributes[i].location,
in.gpState.ilAttributes[i].binding,
in.gpState.ilAttributes[i].format,
in.gpState.ilAttributes[i].offset);
}
for (uint32_t i = 0; i < in.gpState.ilBindingCount; i++) {
out.gpState.ilBindings[i] = DxvkIlBinding(
in.gpState.ilBindings[i].binding,
in.gpState.ilBindings[i].stride,
in.gpState.ilBindings[i].inputRate,
in.gpState.ilDivisors[i]);
}
out.gpState.rs = DxvkRsInfo(
in.gpState.rsDepthClipEnable,
in.gpState.rsDepthBiasEnable,
in.gpState.rsPolygonMode,
in.gpState.rsCullMode,
in.gpState.rsFrontFace,
in.gpState.rsViewportCount,
in.gpState.rsSampleCount);
out.gpState.ms = DxvkMsInfo(
in.gpState.msSampleCount,
in.gpState.msSampleMask,
in.gpState.msEnableAlphaToCoverage);
out.gpState.ds = DxvkDsInfo(
in.gpState.dsEnableDepthTest,
in.gpState.dsEnableDepthWrite,
in.gpState.dsEnableDepthBoundsTest,
in.gpState.dsEnableStencilTest,
in.gpState.dsDepthCompareOp);
out.gpState.dsFront = DxvkDsStencilOp(in.gpState.dsStencilOpFront);
out.gpState.dsBack = DxvkDsStencilOp(in.gpState.dsStencilOpBack);
out.gpState.om = DxvkOmInfo(
in.gpState.omEnableLogicOp,
in.gpState.omLogicOp);
for (uint32_t i = 0; i < 8 && i < MaxNumRenderTargets; i++) {
out.gpState.omBlend[i] = DxvkOmAttachmentBlend(
in.gpState.omBlendAttachments[i].blendEnable,
in.gpState.omBlendAttachments[i].srcColorBlendFactor,
in.gpState.omBlendAttachments[i].dstColorBlendFactor,
in.gpState.omBlendAttachments[i].colorBlendOp,
in.gpState.omBlendAttachments[i].srcAlphaBlendFactor,
in.gpState.omBlendAttachments[i].dstAlphaBlendFactor,
in.gpState.omBlendAttachments[i].alphaBlendOp,
in.gpState.omBlendAttachments[i].colorWriteMask);
out.gpState.omSwizzle[i] = DxvkOmAttachmentSwizzle(
in.gpState.omComponentMapping[i]);
}
// Specialization constants
for (uint32_t i = 0; i < 8 && i < MaxNumSpecConstants; i++)
out.cpState.sc.specConstants[i] = in.cpState.scSpecConstants[i];
} else {
// Binding mask
out.cpState.bsBindingMask = in.cpState.bsBindingMask;
for (uint32_t i = 0; i < 8 && i < MaxNumSpecConstants; i++)
out.gpState.sc.specConstants[i] = in.gpState.scSpecConstants[i];
}
return true;
}
void DxvkStateCache::workerFunc() {
env::setThreadName("dxvk-shader");
while (!m_stopThreads.load()) {
WorkerItem item;
{ std::unique_lock<std::mutex> lock(m_workerLock);
if (m_workerQueue.empty()) {
m_workerBusy -= 1;
m_workerCond.wait(lock, [this] () {
return m_workerQueue.size()
|| m_stopThreads.load();
});
if (!m_workerQueue.empty())
m_workerBusy += 1;
}
if (m_workerQueue.empty())
break;
item = m_workerQueue.front();
m_workerQueue.pop();
}
compilePipelines(item);
}
}
void DxvkStateCache::writerFunc() {
env::setThreadName("dxvk-writer");
std::ofstream file;
while (!m_stopThreads.load()) {
DxvkStateCacheEntry entry;
{ std::unique_lock<std::mutex> lock(m_writerLock);
m_writerCond.wait(lock, [this] () {
return m_writerQueue.size()
|| m_stopThreads.load();
});
if (m_writerQueue.size() == 0)
break;
entry = m_writerQueue.front();
m_writerQueue.pop();
}
if (!file) {
file = std::ofstream(getCacheFileName(),
std::ios_base::binary |
std::ios_base::app);
}
writeCacheEntry(file, entry);
}
}
std::string DxvkStateCache::getCacheFileName() const {
std::string path = getCacheDir();
if (!path.empty() && *path.rbegin() != '/')
path += '/';
std::string exeName = env::getExeName();
auto extp = exeName.find_last_of('.');
if (extp != std::string::npos && exeName.substr(extp + 1) == "exe")
exeName.erase(extp);
path += exeName + ".dxvk-cache";
return path;
}
std::string DxvkStateCache::getCacheDir() const {
return env::getEnvVar("DXVK_STATE_CACHE_PATH");
}
uint8_t DxvkStateCache::packImageLayout(
VkImageLayout layout) {
switch (layout) {
case VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL: return 0x80;
case VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL: return 0x81;
default: return uint8_t(layout);
}
}
VkImageLayout DxvkStateCache::unpackImageLayout(
uint8_t layout) {
switch (layout) {
case 0x80: return VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL;
case 0x81: return VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL;
default: return VkImageLayout(layout);
}
}
bool DxvkStateCache::validateRenderPassFormat(
const DxvkRenderPassFormat& format) {
bool valid = true;
if (format.depth.format) {
valid &= format.depth.layout == VK_IMAGE_LAYOUT_GENERAL
|| format.depth.layout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL
|| format.depth.layout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL
|| format.depth.layout == VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL
|| format.depth.layout == VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL;
}
for (uint32_t i = 0; i < MaxNumRenderTargets && valid; i++) {
if (format.color[i].format) {
valid &= format.color[i].layout == VK_IMAGE_LAYOUT_GENERAL
|| format.color[i].layout == VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
}
}
return valid;
}
}