1
0
mirror of https://github.com/EduApps-CDG/OpenDX synced 2024-12-30 09:45:37 +01:00
OpenDX/src/dxvk/dxvk_shader.cpp

385 lines
11 KiB
C++

#include "dxvk_shader.h"
#include <algorithm>
#include <unordered_map>
#include <unordered_set>
namespace dxvk {
DxvkShaderConstData::DxvkShaderConstData() {
}
DxvkShaderConstData::DxvkShaderConstData(
size_t dwordCount,
const uint32_t* dwordArray)
: m_size(dwordCount), m_data(new uint32_t[dwordCount]) {
for (size_t i = 0; i < dwordCount; i++)
m_data[i] = dwordArray[i];
}
DxvkShaderConstData::DxvkShaderConstData(DxvkShaderConstData&& other)
: m_size(other.m_size), m_data(other.m_data) {
other.m_size = 0;
other.m_data = nullptr;
}
DxvkShaderConstData& DxvkShaderConstData::operator = (DxvkShaderConstData&& other) {
delete[] m_data;
this->m_size = other.m_size;
this->m_data = other.m_data;
other.m_size = 0;
other.m_data = nullptr;
return *this;
}
DxvkShaderConstData::~DxvkShaderConstData() {
delete[] m_data;
}
DxvkShaderModule::DxvkShaderModule()
: m_vkd(nullptr), m_stage() {
}
DxvkShaderModule::DxvkShaderModule(DxvkShaderModule&& other)
: m_vkd(std::move(other.m_vkd)) {
this->m_stage = other.m_stage;
other.m_stage = VkPipelineShaderStageCreateInfo();
}
DxvkShaderModule::DxvkShaderModule(
const Rc<vk::DeviceFn>& vkd,
const Rc<DxvkShader>& shader,
const SpirvCodeBuffer& code)
: m_vkd(vkd), m_stage() {
m_stage.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
m_stage.pNext = nullptr;
m_stage.flags = 0;
m_stage.stage = shader->stage();
m_stage.module = VK_NULL_HANDLE;
m_stage.pName = "main";
m_stage.pSpecializationInfo = nullptr;
VkShaderModuleCreateInfo info;
info.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
info.pNext = nullptr;
info.flags = 0;
info.codeSize = code.size();
info.pCode = code.data();
if (m_vkd->vkCreateShaderModule(m_vkd->device(), &info, nullptr, &m_stage.module) != VK_SUCCESS)
throw DxvkError("DxvkComputePipeline::DxvkComputePipeline: Failed to create shader module");
}
DxvkShaderModule::~DxvkShaderModule() {
if (m_vkd != nullptr) {
m_vkd->vkDestroyShaderModule(
m_vkd->device(), m_stage.module, nullptr);
}
}
DxvkShaderModule& DxvkShaderModule::operator = (DxvkShaderModule&& other) {
this->m_vkd = std::move(other.m_vkd);
this->m_stage = other.m_stage;
other.m_stage = VkPipelineShaderStageCreateInfo();
return *this;
}
DxvkShader::DxvkShader(
VkShaderStageFlagBits stage,
uint32_t slotCount,
const DxvkResourceSlot* slotInfos,
const DxvkInterfaceSlots& iface,
SpirvCodeBuffer code,
const DxvkShaderOptions& options,
DxvkShaderConstData&& constData)
: m_stage(stage), m_code(code), m_interface(iface),
m_options(options), m_constData(std::move(constData)) {
// Write back resource slot infos
for (uint32_t i = 0; i < slotCount; i++)
m_slots.push_back(slotInfos[i]);
// Gather the offsets where the binding IDs
// are stored so we can quickly remap them.
uint32_t o1VarId = 0;
for (auto ins : code) {
if (ins.opCode() == spv::OpDecorate) {
if (ins.arg(2) == spv::DecorationBinding
|| ins.arg(2) == spv::DecorationSpecId)
m_idOffsets.push_back(ins.offset() + 3);
if (ins.arg(2) == spv::DecorationLocation && ins.arg(3) == 1) {
m_o1LocOffset = ins.offset() + 3;
o1VarId = ins.arg(1);
}
if (ins.arg(2) == spv::DecorationIndex && ins.arg(1) == o1VarId)
m_o1IdxOffset = ins.offset() + 3;
}
if (ins.opCode() == spv::OpExecutionMode) {
if (ins.arg(2) == spv::ExecutionModeStencilRefReplacingEXT)
m_flags.set(DxvkShaderFlag::ExportsStencilRef);
if (ins.arg(2) == spv::ExecutionModeXfb)
m_flags.set(DxvkShaderFlag::HasTransformFeedback);
}
if (ins.opCode() == spv::OpCapability) {
if (ins.arg(1) == spv::CapabilitySampleRateShading)
m_flags.set(DxvkShaderFlag::HasSampleRateShading);
if (ins.arg(1) == spv::CapabilityShaderViewportIndexLayerEXT)
m_flags.set(DxvkShaderFlag::ExportsViewportIndexLayerFromVertexStage);
}
}
}
DxvkShader::~DxvkShader() {
}
void DxvkShader::defineResourceSlots(
DxvkDescriptorSlotMapping& mapping) const {
for (const auto& slot : m_slots)
mapping.defineSlot(m_stage, slot);
if (m_interface.pushConstSize) {
mapping.definePushConstRange(m_stage,
m_interface.pushConstOffset,
m_interface.pushConstSize);
}
}
DxvkShaderModule DxvkShader::createShaderModule(
const Rc<vk::DeviceFn>& vkd,
const DxvkDescriptorSlotMapping& mapping,
const DxvkShaderModuleCreateInfo& info) {
SpirvCodeBuffer spirvCode = m_code.decompress();
uint32_t* code = spirvCode.data();
// Remap resource binding IDs
for (uint32_t ofs : m_idOffsets) {
if (code[ofs] < MaxNumResourceSlots)
code[ofs] = mapping.getBindingId(code[ofs]);
}
// For dual-source blending we need to re-map
// location 1, index 0 to location 0, index 1
if (info.fsDualSrcBlend && m_o1IdxOffset && m_o1LocOffset)
std::swap(code[m_o1IdxOffset], code[m_o1LocOffset]);
// Replace undefined input variables with zero
for (uint32_t u = info.undefinedInputs; u; u &= u - 1)
eliminateInput(spirvCode, bit::tzcnt(u));
return DxvkShaderModule(vkd, this, spirvCode);
}
void DxvkShader::dump(std::ostream& outputStream) const {
m_code.decompress().store(outputStream);
}
void DxvkShader::eliminateInput(SpirvCodeBuffer& code, uint32_t location) {
struct SpirvTypeInfo {
spv::Op op = spv::OpNop;
uint32_t baseTypeId = 0;
uint32_t compositeSize = 0;
spv::StorageClass storageClass = spv::StorageClassMax;
};
std::unordered_map<uint32_t, SpirvTypeInfo> types;
std::unordered_map<uint32_t, uint32_t> constants;
std::unordered_set<uint32_t> candidates;
// Find the input variable in question
size_t inputVarOffset = 0;
uint32_t inputVarTypeId = 0;
uint32_t inputVarId = 0;
for (auto ins : code) {
if (ins.opCode() == spv::OpDecorate) {
if (ins.arg(2) == spv::DecorationLocation
&& ins.arg(3) == location)
candidates.insert(ins.arg(1));
}
if (ins.opCode() == spv::OpConstant)
constants.insert({ ins.arg(2), ins.arg(3) });
if (ins.opCode() == spv::OpTypeFloat || ins.opCode() == spv::OpTypeInt)
types.insert({ ins.arg(1), { ins.opCode(), 0, ins.arg(2), spv::StorageClassMax }});
if (ins.opCode() == spv::OpTypeVector)
types.insert({ ins.arg(1), { ins.opCode(), ins.arg(2), ins.arg(3), spv::StorageClassMax }});
if (ins.opCode() == spv::OpTypeArray) {
auto constant = constants.find(ins.arg(3));
if (constant == constants.end())
continue;
types.insert({ ins.arg(1), { ins.opCode(), ins.arg(2), constant->second, spv::StorageClassMax }});
}
if (ins.opCode() == spv::OpTypePointer)
types.insert({ ins.arg(1), { ins.opCode(), ins.arg(3), 0, spv::StorageClass(ins.arg(2)) }});
if (ins.opCode() == spv::OpVariable && spv::StorageClass(ins.arg(3)) == spv::StorageClassInput) {
if (candidates.find(ins.arg(2)) != candidates.end()) {
inputVarOffset = ins.offset();
inputVarTypeId = ins.arg(1);
inputVarId = ins.arg(2);
break;
}
}
}
if (!inputVarId)
return;
// Declare private pointer types
auto pointerType = types.find(inputVarTypeId);
if (pointerType == types.end())
return;
code.beginInsertion(inputVarOffset);
std::vector<std::pair<uint32_t, SpirvTypeInfo>> privateTypes;
for (auto p = types.find(pointerType->second.baseTypeId);
p != types.end();
p = types.find(p->second.baseTypeId)) {
std::pair<uint32_t, SpirvTypeInfo> info = *p;
info.first = 0;
info.second.baseTypeId = p->first;
info.second.storageClass = spv::StorageClassPrivate;
for (auto t : types) {
if (t.second.op == info.second.op
&& t.second.baseTypeId == info.second.baseTypeId
&& t.second.storageClass == info.second.storageClass)
info.first = t.first;
}
if (!info.first) {
info.first = code.allocId();
code.putIns(spv::OpTypePointer, 4);
code.putWord(info.first);
code.putWord(info.second.storageClass);
code.putWord(info.second.baseTypeId);
}
privateTypes.push_back(info);
}
// Define zero constants
uint32_t constantId = 0;
for (auto i = privateTypes.rbegin(); i != privateTypes.rend(); i++) {
if (constantId) {
uint32_t compositeSize = i->second.compositeSize;
uint32_t compositeId = code.allocId();
code.putIns(spv::OpConstantComposite, 3 + compositeSize);
code.putWord(i->second.baseTypeId);
code.putWord(compositeId);
for (uint32_t i = 0; i < compositeSize; i++)
code.putWord(constantId);
constantId = compositeId;
} else {
constantId = code.allocId();
code.putIns(spv::OpConstant, 4);
code.putWord(i->second.baseTypeId);
code.putWord(constantId);
code.putWord(0);
}
}
// Erase and re-declare variable
code.erase(4);
code.putIns(spv::OpVariable, 5);
code.putWord(privateTypes[0].first);
code.putWord(inputVarId);
code.putWord(spv::StorageClassPrivate);
code.putWord(constantId);
code.endInsertion();
// Remove variable from interface list
for (auto ins : code) {
if (ins.opCode() == spv::OpEntryPoint) {
uint32_t argIdx = 2 + code.strLen(ins.chr(2));
while (argIdx < ins.length()) {
if (ins.arg(argIdx) == inputVarId) {
ins.setArg(0, spv::OpEntryPoint | ((ins.length() - 1) << spv::WordCountShift));
code.beginInsertion(ins.offset() + argIdx);
code.erase(1);
code.endInsertion();
break;
}
argIdx += 1;
}
}
}
// Remove location declarations
for (auto ins : code) {
if (ins.opCode() == spv::OpDecorate
&& ins.arg(2) == spv::DecorationLocation
&& ins.arg(1) == inputVarId) {
code.beginInsertion(ins.offset());
code.erase(4);
code.endInsertion();
break;
}
}
// Fix up pointer types used in access chain instructions
std::unordered_map<uint32_t, uint32_t> accessChainIds;
for (auto ins : code) {
if (ins.opCode() == spv::OpAccessChain
|| ins.opCode() == spv::OpInBoundsAccessChain) {
uint32_t depth = ins.length() - 4;
if (ins.arg(3) == inputVarId) {
// Access chains accessing the variable directly
ins.setArg(1, privateTypes.at(depth).first);
accessChainIds.insert({ ins.arg(2), depth });
} else {
// Access chains derived from the variable
auto entry = accessChainIds.find(ins.arg(2));
if (entry != accessChainIds.end()) {
depth += entry->second;
ins.setArg(1, privateTypes.at(depth).first);
accessChainIds.insert({ ins.arg(2), depth });
}
}
}
}
}
}