#include #include #include "dxvk_device.h" #include "dxvk_graphics.h" #include "dxvk_pipemanager.h" #include "dxvk_spec_const.h" #include "dxvk_state_cache.h" namespace dxvk { DxvkGraphicsPipelineStateInfo::DxvkGraphicsPipelineStateInfo() { std::memset(this, 0, sizeof(DxvkGraphicsPipelineStateInfo)); } DxvkGraphicsPipelineStateInfo::DxvkGraphicsPipelineStateInfo( const DxvkGraphicsPipelineStateInfo& other) { std::memcpy(this, &other, sizeof(DxvkGraphicsPipelineStateInfo)); } DxvkGraphicsPipelineStateInfo& DxvkGraphicsPipelineStateInfo::operator = ( const DxvkGraphicsPipelineStateInfo& other) { std::memcpy(this, &other, sizeof(DxvkGraphicsPipelineStateInfo)); return *this; } bool DxvkGraphicsPipelineStateInfo::operator == (const DxvkGraphicsPipelineStateInfo& other) const { return std::memcmp(this, &other, sizeof(DxvkGraphicsPipelineStateInfo)) == 0; } bool DxvkGraphicsPipelineStateInfo::operator != (const DxvkGraphicsPipelineStateInfo& other) const { return std::memcmp(this, &other, sizeof(DxvkGraphicsPipelineStateInfo)) != 0; } DxvkGraphicsPipeline::DxvkGraphicsPipeline( DxvkPipelineManager* pipeMgr, DxvkGraphicsPipelineShaders shaders) : m_vkd(pipeMgr->m_device->vkd()), m_pipeMgr(pipeMgr), m_shaders(std::move(shaders)) { if (m_shaders.vs != nullptr) m_shaders.vs ->defineResourceSlots(m_slotMapping); if (m_shaders.tcs != nullptr) m_shaders.tcs->defineResourceSlots(m_slotMapping); if (m_shaders.tes != nullptr) m_shaders.tes->defineResourceSlots(m_slotMapping); if (m_shaders.gs != nullptr) m_shaders.gs ->defineResourceSlots(m_slotMapping); if (m_shaders.fs != nullptr) m_shaders.fs ->defineResourceSlots(m_slotMapping); m_slotMapping.makeDescriptorsDynamic( pipeMgr->m_device->options().maxNumDynamicUniformBuffers, pipeMgr->m_device->options().maxNumDynamicStorageBuffers); m_layout = new DxvkPipelineLayout(m_vkd, m_slotMapping, VK_PIPELINE_BIND_POINT_GRAPHICS); m_vsIn = m_shaders.vs != nullptr ? m_shaders.vs->interfaceSlots().inputSlots : 0; m_fsOut = m_shaders.fs != nullptr ? m_shaders.fs->interfaceSlots().outputSlots : 0; if (m_shaders.gs != nullptr && m_shaders.gs->hasCapability(spv::CapabilityTransformFeedback)) m_flags.set(DxvkGraphicsPipelineFlag::HasTransformFeedback); VkShaderStageFlags stoStages = m_layout->getStorageDescriptorStages(); if (stoStages & VK_SHADER_STAGE_FRAGMENT_BIT) m_flags.set(DxvkGraphicsPipelineFlag::HasFsStorageDescriptors); if (stoStages & ~VK_SHADER_STAGE_FRAGMENT_BIT) m_flags.set(DxvkGraphicsPipelineFlag::HasVsStorageDescriptors); m_common.msSampleShadingEnable = m_shaders.fs != nullptr && m_shaders.fs->hasCapability(spv::CapabilitySampleRateShading); m_common.msSampleShadingFactor = 1.0f; } DxvkGraphicsPipeline::~DxvkGraphicsPipeline() { for (const auto& instance : m_pipelines) this->destroyPipeline(instance.pipeline()); } Rc DxvkGraphicsPipeline::getShader( VkShaderStageFlagBits stage) const { switch (stage) { case VK_SHADER_STAGE_VERTEX_BIT: return m_shaders.vs; case VK_SHADER_STAGE_GEOMETRY_BIT: return m_shaders.gs; case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT: return m_shaders.tcs; case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT: return m_shaders.tes; case VK_SHADER_STAGE_FRAGMENT_BIT: return m_shaders.fs; default: return nullptr; } } VkPipeline DxvkGraphicsPipeline::getPipelineHandle( const DxvkGraphicsPipelineStateInfo& state, const DxvkRenderPass* renderPass) { DxvkGraphicsPipelineInstance* instance = nullptr; { std::lock_guard lock(m_mutex); instance = this->findInstance(state, renderPass); if (instance) return instance->pipeline(); instance = this->createInstance(state, renderPass); } if (!instance) return VK_NULL_HANDLE; this->writePipelineStateToCache(state, renderPass->format()); return instance->pipeline(); } void DxvkGraphicsPipeline::compilePipeline( const DxvkGraphicsPipelineStateInfo& state, const DxvkRenderPass* renderPass) { std::lock_guard lock(m_mutex); if (!this->findInstance(state, renderPass)) this->createInstance(state, renderPass); } DxvkGraphicsPipelineInstance* DxvkGraphicsPipeline::createInstance( const DxvkGraphicsPipelineStateInfo& state, const DxvkRenderPass* renderPass) { // If the pipeline state vector is invalid, don't try // to create a new pipeline, it won't work anyway. if (!this->validatePipelineState(state)) return nullptr; VkPipeline newPipelineHandle = this->createPipeline(state, renderPass); m_pipeMgr->m_numGraphicsPipelines += 1; return &m_pipelines.emplace_back(state, renderPass, newPipelineHandle); } DxvkGraphicsPipelineInstance* DxvkGraphicsPipeline::findInstance( const DxvkGraphicsPipelineStateInfo& state, const DxvkRenderPass* renderPass) { for (auto& instance : m_pipelines) { if (instance.isCompatible(state, renderPass)) return &instance; } return nullptr; } VkPipeline DxvkGraphicsPipeline::createPipeline( const DxvkGraphicsPipelineStateInfo& state, const DxvkRenderPass* renderPass) const { if (Logger::logLevel() <= LogLevel::Debug) { Logger::debug("Compiling graphics pipeline..."); this->logPipelineState(LogLevel::Debug, state); } // Render pass format and image layouts DxvkRenderPassFormat passFormat = renderPass->format(); // Set up dynamic states as needed std::array dynamicStates; uint32_t dynamicStateCount = 0; dynamicStates[dynamicStateCount++] = VK_DYNAMIC_STATE_VIEWPORT; dynamicStates[dynamicStateCount++] = VK_DYNAMIC_STATE_SCISSOR; if (state.useDynamicDepthBias()) dynamicStates[dynamicStateCount++] = VK_DYNAMIC_STATE_DEPTH_BIAS; if (state.useDynamicDepthBounds()) dynamicStates[dynamicStateCount++] = VK_DYNAMIC_STATE_DEPTH_BOUNDS; if (state.useDynamicBlendConstants()) dynamicStates[dynamicStateCount++] = VK_DYNAMIC_STATE_BLEND_CONSTANTS; if (state.useDynamicStencilRef()) dynamicStates[dynamicStateCount++] = VK_DYNAMIC_STATE_STENCIL_REFERENCE; // Figure out the actual sample count to use VkSampleCountFlagBits sampleCount = VK_SAMPLE_COUNT_1_BIT; if (state.msSampleCount) sampleCount = VkSampleCountFlagBits(state.msSampleCount); else if (state.rsSampleCount) sampleCount = VkSampleCountFlagBits(state.rsSampleCount); // Set up some specialization constants DxvkSpecConstants specData; specData.set(uint32_t(DxvkSpecConstantId::RasterizerSampleCount), sampleCount, VK_SAMPLE_COUNT_1_BIT); for (uint32_t i = 0; i < m_layout->bindingCount(); i++) specData.set(i, state.bsBindingMask.test(i), true); for (uint32_t i = 0; i < MaxNumRenderTargets; i++) { if ((m_fsOut & (1 << i)) != 0) { uint32_t specId = uint32_t(DxvkSpecConstantId::ColorComponentMappings) + 4 * i; specData.set(specId + 0, util::getComponentIndex(state.omComponentMapping[i].r, 0), 0u); specData.set(specId + 1, util::getComponentIndex(state.omComponentMapping[i].g, 1), 1u); specData.set(specId + 2, util::getComponentIndex(state.omComponentMapping[i].b, 2), 2u); specData.set(specId + 3, util::getComponentIndex(state.omComponentMapping[i].a, 3), 3u); } } for (uint32_t i = 0; i < MaxNumSpecConstants; i++) specData.set(getSpecId(i), state.scSpecConstants[i], 0u); VkSpecializationInfo specInfo = specData.getSpecInfo(); DxvkShaderModuleCreateInfo moduleInfo; moduleInfo.fsDualSrcBlend = state.omBlendAttachments[0].blendEnable && ( util::isDualSourceBlendFactor(state.omBlendAttachments[0].srcColorBlendFactor) || util::isDualSourceBlendFactor(state.omBlendAttachments[0].dstColorBlendFactor) || util::isDualSourceBlendFactor(state.omBlendAttachments[0].srcAlphaBlendFactor) || util::isDualSourceBlendFactor(state.omBlendAttachments[0].dstAlphaBlendFactor)); auto vsm = createShaderModule(m_shaders.vs, moduleInfo); auto gsm = createShaderModule(m_shaders.gs, moduleInfo); auto tcsm = createShaderModule(m_shaders.tcs, moduleInfo); auto tesm = createShaderModule(m_shaders.tes, moduleInfo); auto fsm = createShaderModule(m_shaders.fs, moduleInfo); std::vector stages; if (vsm) stages.push_back(vsm.stageInfo(&specInfo)); if (tcsm) stages.push_back(tcsm.stageInfo(&specInfo)); if (tesm) stages.push_back(tesm.stageInfo(&specInfo)); if (gsm) stages.push_back(gsm.stageInfo(&specInfo)); if (fsm) stages.push_back(fsm.stageInfo(&specInfo)); // Fix up color write masks using the component mappings std::array omBlendAttachments; const VkColorComponentFlags fullMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT; for (uint32_t i = 0; i < MaxNumRenderTargets; i++) { omBlendAttachments[i] = state.omBlendAttachments[i]; if (state.omBlendAttachments[i].colorWriteMask == fullMask) { // Avoid unnecessary partial color write masks omBlendAttachments[i].colorWriteMask = fullMask; } else { omBlendAttachments[i].colorWriteMask = util::remapComponentMask( state.omBlendAttachments[i].colorWriteMask, state.omComponentMapping[i]); } if ((m_fsOut & (1 << i)) == 0) omBlendAttachments[i].colorWriteMask = 0; } // Generate per-instance attribute divisors std::array viDivisorDesc; uint32_t viDivisorCount = 0; for (uint32_t i = 0; i < state.ilBindingCount; i++) { if (state.ilBindings[i].inputRate == VK_VERTEX_INPUT_RATE_INSTANCE && state.ilDivisors[i] != 1) { const uint32_t id = viDivisorCount++; viDivisorDesc[id].binding = i; viDivisorDesc[id].divisor = state.ilDivisors[i]; } } int32_t rasterizedStream = m_shaders.gs != nullptr ? m_shaders.gs->shaderOptions().rasterizedStream : 0; // Compact vertex bindings so that we can more easily update vertex buffers std::array viAttribs; std::array viBindings; std::array viBindingMap = { }; for (uint32_t i = 0; i < state.ilBindingCount; i++) { viBindings[i] = state.ilBindings[i]; viBindings[i].binding = i; viBindingMap[state.ilBindings[i].binding] = i; } for (uint32_t i = 0; i < state.ilAttributeCount; i++) { viAttribs[i] = state.ilAttributes[i]; viAttribs[i].binding = viBindingMap[state.ilAttributes[i].binding]; } VkPipelineVertexInputDivisorStateCreateInfoEXT viDivisorInfo; viDivisorInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_DIVISOR_STATE_CREATE_INFO_EXT; viDivisorInfo.pNext = nullptr; viDivisorInfo.vertexBindingDivisorCount = viDivisorCount; viDivisorInfo.pVertexBindingDivisors = viDivisorDesc.data(); VkPipelineVertexInputStateCreateInfo viInfo; viInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO; viInfo.pNext = &viDivisorInfo; viInfo.flags = 0; viInfo.vertexBindingDescriptionCount = state.ilBindingCount; viInfo.pVertexBindingDescriptions = viBindings.data(); viInfo.vertexAttributeDescriptionCount = state.ilAttributeCount; viInfo.pVertexAttributeDescriptions = viAttribs.data(); if (viDivisorCount == 0) viInfo.pNext = viDivisorInfo.pNext; // TODO remove this once the extension is widely supported if (!m_pipeMgr->m_device->features().extVertexAttributeDivisor.vertexAttributeInstanceRateDivisor) viInfo.pNext = viDivisorInfo.pNext; VkPipelineInputAssemblyStateCreateInfo iaInfo; iaInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO; iaInfo.pNext = nullptr; iaInfo.flags = 0; iaInfo.topology = state.iaPrimitiveTopology; iaInfo.primitiveRestartEnable = state.iaPrimitiveRestart; VkPipelineTessellationStateCreateInfo tsInfo; tsInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_STATE_CREATE_INFO; tsInfo.pNext = nullptr; tsInfo.flags = 0; tsInfo.patchControlPoints = state.iaPatchVertexCount; VkPipelineViewportStateCreateInfo vpInfo; vpInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO; vpInfo.pNext = nullptr; vpInfo.flags = 0; vpInfo.viewportCount = state.rsViewportCount; vpInfo.pViewports = nullptr; vpInfo.scissorCount = state.rsViewportCount; vpInfo.pScissors = nullptr; VkPipelineRasterizationStateStreamCreateInfoEXT xfbStreamInfo; xfbStreamInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_STREAM_CREATE_INFO_EXT; xfbStreamInfo.pNext = nullptr; xfbStreamInfo.flags = 0; xfbStreamInfo.rasterizationStream = uint32_t(rasterizedStream); VkPipelineRasterizationDepthClipStateCreateInfoEXT rsDepthClipInfo; rsDepthClipInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_DEPTH_CLIP_STATE_CREATE_INFO_EXT; rsDepthClipInfo.pNext = nullptr; rsDepthClipInfo.flags = 0; rsDepthClipInfo.depthClipEnable = state.rsDepthClipEnable; VkPipelineRasterizationStateCreateInfo rsInfo; rsInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO; rsInfo.pNext = &rsDepthClipInfo; rsInfo.flags = 0; rsInfo.depthClampEnable = VK_TRUE; rsInfo.rasterizerDiscardEnable = rasterizedStream < 0; rsInfo.polygonMode = state.rsPolygonMode; rsInfo.cullMode = state.rsCullMode; rsInfo.frontFace = state.rsFrontFace; rsInfo.depthBiasEnable = state.rsDepthBiasEnable; rsInfo.depthBiasConstantFactor= 0.0f; rsInfo.depthBiasClamp = 0.0f; rsInfo.depthBiasSlopeFactor = 0.0f; rsInfo.lineWidth = 1.0f; if (rasterizedStream > 0) rsDepthClipInfo.pNext = &xfbStreamInfo; if (!m_pipeMgr->m_device->features().extDepthClipEnable.depthClipEnable) { rsInfo.pNext = rsDepthClipInfo.pNext; rsInfo.depthClampEnable = !state.rsDepthClipEnable; } VkPipelineMultisampleStateCreateInfo msInfo; msInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO; msInfo.pNext = nullptr; msInfo.flags = 0; msInfo.rasterizationSamples = sampleCount; msInfo.sampleShadingEnable = m_common.msSampleShadingEnable; msInfo.minSampleShading = m_common.msSampleShadingFactor; msInfo.pSampleMask = &state.msSampleMask; msInfo.alphaToCoverageEnable = state.msEnableAlphaToCoverage; msInfo.alphaToOneEnable = VK_FALSE; VkPipelineDepthStencilStateCreateInfo dsInfo; dsInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO; dsInfo.pNext = nullptr; dsInfo.flags = 0; dsInfo.depthTestEnable = state.dsEnableDepthTest; dsInfo.depthWriteEnable = state.dsEnableDepthWrite && !util::isDepthReadOnlyLayout(passFormat.depth.layout); dsInfo.depthCompareOp = state.dsDepthCompareOp; dsInfo.depthBoundsTestEnable = state.dsEnableDepthBoundsTest; dsInfo.stencilTestEnable = state.dsEnableStencilTest; dsInfo.front = state.dsStencilOpFront; dsInfo.back = state.dsStencilOpBack; dsInfo.minDepthBounds = 0.0f; dsInfo.maxDepthBounds = 1.0f; VkPipelineColorBlendStateCreateInfo cbInfo; cbInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO; cbInfo.pNext = nullptr; cbInfo.flags = 0; cbInfo.logicOpEnable = state.omEnableLogicOp; cbInfo.logicOp = state.omLogicOp; cbInfo.attachmentCount = DxvkLimits::MaxNumRenderTargets; cbInfo.pAttachments = omBlendAttachments.data(); for (uint32_t i = 0; i < 4; i++) cbInfo.blendConstants[i] = 0.0f; VkPipelineDynamicStateCreateInfo dyInfo; dyInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO; dyInfo.pNext = nullptr; dyInfo.flags = 0; dyInfo.dynamicStateCount = dynamicStateCount; dyInfo.pDynamicStates = dynamicStates.data(); VkGraphicsPipelineCreateInfo info; info.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO; info.pNext = nullptr; info.flags = 0; info.stageCount = stages.size(); info.pStages = stages.data(); info.pVertexInputState = &viInfo; info.pInputAssemblyState = &iaInfo; info.pTessellationState = &tsInfo; info.pViewportState = &vpInfo; info.pRasterizationState = &rsInfo; info.pMultisampleState = &msInfo; info.pDepthStencilState = &dsInfo; info.pColorBlendState = &cbInfo; info.pDynamicState = &dyInfo; info.layout = m_layout->pipelineLayout(); info.renderPass = renderPass->getDefaultHandle(); info.subpass = 0; info.basePipelineHandle = VK_NULL_HANDLE; info.basePipelineIndex = -1; if (tsInfo.patchControlPoints == 0) info.pTessellationState = nullptr; // Time pipeline compilation for debugging purposes auto t0 = std::chrono::high_resolution_clock::now(); VkPipeline pipeline = VK_NULL_HANDLE; if (m_vkd->vkCreateGraphicsPipelines(m_vkd->device(), m_pipeMgr->m_cache->handle(), 1, &info, nullptr, &pipeline) != VK_SUCCESS) { Logger::err("DxvkGraphicsPipeline: Failed to compile pipeline"); this->logPipelineState(LogLevel::Error, state); return VK_NULL_HANDLE; } auto t1 = std::chrono::high_resolution_clock::now(); auto td = std::chrono::duration_cast(t1 - t0); Logger::debug(str::format("DxvkGraphicsPipeline: Finished in ", td.count(), " ms")); return pipeline; } void DxvkGraphicsPipeline::destroyPipeline(VkPipeline pipeline) const { m_vkd->vkDestroyPipeline(m_vkd->device(), pipeline, nullptr); } DxvkShaderModule DxvkGraphicsPipeline::createShaderModule( const Rc& shader, const DxvkShaderModuleCreateInfo& info) const { return shader != nullptr ? shader->createShaderModule(m_vkd, m_slotMapping, info) : DxvkShaderModule(); } bool DxvkGraphicsPipeline::validatePipelineState( const DxvkGraphicsPipelineStateInfo& state) const { // Validate vertex input - each input slot consumed by the // vertex shader must be provided by the input layout. uint32_t providedVertexInputs = 0; for (uint32_t i = 0; i < state.ilAttributeCount; i++) providedVertexInputs |= 1u << state.ilAttributes[i].location; if ((providedVertexInputs & m_vsIn) != m_vsIn) return false; // If there are no tessellation shaders, we // obviously cannot use tessellation patches. if ((state.iaPatchVertexCount != 0) && (m_shaders.tcs == nullptr || m_shaders.tes == nullptr)) return false; // Prevent unintended out-of-bounds access to the IL arrays if (state.ilAttributeCount > DxvkLimits::MaxNumVertexAttributes || state.ilBindingCount > DxvkLimits::MaxNumVertexBindings) return false; // No errors return true; } void DxvkGraphicsPipeline::writePipelineStateToCache( const DxvkGraphicsPipelineStateInfo& state, const DxvkRenderPassFormat& format) const { if (m_pipeMgr->m_stateCache == nullptr) return; DxvkStateCacheKey key; if (m_shaders.vs != nullptr) key.vs = m_shaders.vs->getShaderKey(); if (m_shaders.tcs != nullptr) key.tcs = m_shaders.tcs->getShaderKey(); if (m_shaders.tes != nullptr) key.tes = m_shaders.tes->getShaderKey(); if (m_shaders.gs != nullptr) key.gs = m_shaders.gs->getShaderKey(); if (m_shaders.fs != nullptr) key.fs = m_shaders.fs->getShaderKey(); m_pipeMgr->m_stateCache->addGraphicsPipeline(key, state, format); } void DxvkGraphicsPipeline::logPipelineState( LogLevel level, const DxvkGraphicsPipelineStateInfo& state) const { if (m_shaders.vs != nullptr) Logger::log(level, str::format(" vs : ", m_shaders.vs ->debugName())); if (m_shaders.tcs != nullptr) Logger::log(level, str::format(" tcs : ", m_shaders.tcs->debugName())); if (m_shaders.tes != nullptr) Logger::log(level, str::format(" tes : ", m_shaders.tes->debugName())); if (m_shaders.gs != nullptr) Logger::log(level, str::format(" gs : ", m_shaders.gs ->debugName())); if (m_shaders.fs != nullptr) Logger::log(level, str::format(" fs : ", m_shaders.fs ->debugName())); for (uint32_t i = 0; i < state.ilAttributeCount; i++) { const VkVertexInputAttributeDescription& attr = state.ilAttributes[i]; Logger::log(level, str::format(" attr ", i, " : location ", attr.location, ", binding ", attr.binding, ", format ", attr.format, ", offset ", attr.offset)); } for (uint32_t i = 0; i < state.ilBindingCount; i++) { const VkVertexInputBindingDescription& bind = state.ilBindings[i]; Logger::log(level, str::format(" binding ", i, " : binding ", bind.binding, ", stride ", bind.stride, ", rate ", bind.inputRate, ", divisor ", state.ilDivisors[i])); } // TODO log more pipeline state } }