
DxWnd rel. 2.01.99 unfinished Manual

What is DxWnd?
DxWnd is a Win32 hooker that intercepts the window creation event for the configured tasks and
alter the behaviour of several system call (from user32.dll, GDI32.dll and the DirectX libraries) in
order to get a proper behaviour of fullscreen programs, but in a windowed environment..... too
complicated? Well, actually DxWnd is a tool that does its best to let you run fullscreen applications
in a window.

Why DxWnd?
This is not a silly question. Actually, you may think to two different questions:

1) Why should I use DxWnd?

2) Why someone should spend his time to develop it?

Why should I use DxWnd?

Let's start with the first one. Once upon a time (in the IT clock, that means a few years ago) people
used to have clumsy PCs that in a slow and single-threaded environment tried to do their best to
impress their owner with strength demonstrations, usually trying to move colored pixels on the
screen in the fastest possible way. That custom was named videogaming, and implied using all
tricky ways to improve the system performances. One common way to do that, was to highjack all
hardware resources and dedicate them for this single purpose, of course disabling any attempt to run
parallel tasks in other portions of the screen: the classic example being any videogame developed
for Win95 and further.

Now, you guys may ask yourselves why should all this time be passed away and PC increased their
power by a 100x times more, to keep playing the very same game in the very same environment.
Someone is calling you on a chat? A new email message is arrived? You want to browse the net
meanwhile? Something is happening on your favourite social network or MMPORPG? Forget about
it! You're currently dealing with a task that wants 100% of your attention, even if it uses 1% of your
PC power. So, why not attempting to push this old and invasive application within a window of its
own ?

That's what DxWnd is for: let fullscreen applications run pretending they're still in a fullscreen
context, but actually within their own separate window. And, taking advantage of the code hooking
needed to do so, in some case it may even happen that things are further improved, but we'll see this
later.

Why someone should spend his time to develop it?

Now the second question: why someone should ever bother to develop a thing like this? This is
different story. I started looking for a window-izer for a specific purpose: not having a dual monitor
PC at home, I was looking for a way to debug fullscreen videogames. Looking in the net resources,
I got references to an asian (japanese?) DxWnd project that seemed discontinued, but left an old
copy of the C++ sources (unfortunately, not the most recent release) to be downloaded. After that,
there were several attempts to translate and improve the program, but none shared the sources
again. When I opened the project trying to understand the basic principle, I found that it was
incredibly simple and yet sophisticated, acting I think in a very close way as virus or anti-virus
programs do.

So I just thought it was such a pity that this incredible piece of artwork of C++ programming could
be left discontinued, and then I decided to “adopt” the project and continue it, even if in the
meanwhile I bought a second monitor for my domestic PC. And for the same reason, I published the
source code on sourceforge, a proper location for any open source piece of coding, and I encourage
anyone to join the project and extend it further on. And let me thank again the mysterious coder
whose only trail left to make a reference is SFB7: whoever you are, SFB7 (if this was your nick),
thank you.

How does DxWnd work?
Well, actually there are several different ways you may write a fullscreen application, and that's why
there are corresponding different ways to handle it hence some annoying configuration to do before.

Please, bear in mind that DxWnd is still an experimental program, and then its configuration is still
a little clumsy. This aspect will be improved and simplified at proper time, later on.

Anyway, these are the basic principles of the DxWnd behaviour:

1. DxWnd DOES NOT alterate in any way the behaviour of your software (either system or
applications) when not active. When turned off, everything behaves as if DxWnd never run
on your machine, or never existed at all.

2. DxWnd DOES alterate the behaviour of your application software when running: it hooks
custom code that changes the applications' behaviour, hopefully in a positive way, but you
never know. It's possible that because of hacks to the directdraw or other system code there
might be annoying effects such as frozen screen, unresponsive keyboard and so on. Be
patient and maybe you'll find a good game setting to play without side effects

3. This is tricky: when running, DxWnd affects ALL games in the shown list, no matter
whether the cursor is highlighting a particular one, or if you started your game outside the
DxWnd interface. That's why you need not activate the game from the DxWnd menu, but
you could keep managing it as usual (clicking on desktop icons, shortcuts or whatsoever).
So, remember this: whenever DxWnd is running, it impacts on ANY game it is configured
on its game list, no matter if you didn't strt it from DxWnd interface.

4. Again, DxWnd is currently coded to make ONE SINGLE game working at a time, even if it
could be possible to start and intercept more than one in parallel. In some cases, the games
work together, but unpredictable things happen for instance when you try to control more
than one game at a time. Maybe one day it will make it possible to play more games in
parallel, but so far that feature is unsupported, so DxWnd is operating on one game (the fist
started up) while the others will not be effected and should start normally in their original
fullscreen mode.

DxWnd stores ALL its settings on a configuration file (dxwnd.ini vy default) in the very same
folder where dxwnd.exe and the hooker dxwnd.dll are located. No info is written in the registry or
anywhere else in the system. No installation procedure is required, just copy the files where you like
better, create your own shortcut entries wherever you like and, whenever you're satisfied with some
DxWnd setting, just back-up the configuration by simply copying the dxwnd.ini file somewhere
else. Also, keep in mind that ALL changes are written on disk just when DxWnd exits safely, so
whenever it crashes your configuration changes are certain to be lost.

The command line arguments
DxWnd accepts a few command line arguments, that can all be combined together to alter his
behaviour:

/T Starts DxWnd iconized in the System Tray (see DxWnd in
the System Tray)

/I Starts DxWnd initially in the IDLE state, so that it doesn't
effect the programs until you manually issue a
Hook►Start command

/C:<filename> Uses the <filename> configuration file instead of the
default config.ini file. In any case, the configuration file
must be located in the same DxWnd execution folder.

The Application GUI
DxWnd comes with a nice and simple Graphic User Interface: when started, it shows a form pretty
muck like the one in the following picture:

In the main window there is the list of hooked programs: DxWnd can currently handle up to 256.
Trying to add more than that will give an error message. Keep in mind that DxWnd bundles usually
contain an example configuration files with some entries already set, but because of the program
absolute path value, chances are that none of the existing entries will actually work without some
corrections.

You can activate command either via the top menu, or by right clicking on a row in the application
list. These are the commands:

From release v2.1.68 on, DxWnd is also able to operate iconized in the System Tray, from where it shows its state
(either IDLE, READY or RUNNING) and run a few useful commands.

From release v2.1.78 on, DxWnd detects the video settings when is started, and compares it to the current value after
killing a task or terminating itself: in case it finds differences, it now prompt the user asking whether you want the
previous screen setting to be restored. This is quite useful to handle all the games that terminates without restoring the
previous setting, as it may happen when they die abnormally.

File → Sort program list Arranges the program list in ascending alphabetical order
(sort).

File → Clear all logs Turns all tracing options off for all games in the list and
deletes any dxwnd.log file.

File → Hook → Start / Stop Hook Stop is a handy way to prevent DxWnd to do its
job, pretty much the same to stop the program, but leaving
it running (in the IDLE state). Hook Start restores the
default behaviour (the READY state, or RUNNING when
operating on a task).

File → Kill Kills the last process activated by the DxWnd interface.
Very useful to get rid of games gone crazy because of

DxWnd that refuse to terminate themselves.

File → Move to Tray Move DxWnd in the System Tray, where a dedicated icon
will show its state and allow a few commands, including
the possibility to show the application window again.
Note that once DxWnd goes in the System Tray, it always
stays there also when it is made visible again.

File → eXit Exits DxWnd. Beware that if a game was activated while
DxWnd was active, it will very likely crash after the
DxWnd termination, so a check is made and you'd be
prompted to confirm the operation.

Edit → Run Starts the currently selected application

Edit → Modify Opens the configuration panel to set/change the selected
program settings

Edit → Delete Deletes the selected application entry (asking a Yes/No
confirmation)

Edit → Add Inserts a new application entry in the list. The
configuration panel is opened to let you define the initial
settings.

Edit → Explore Opens Microsoft Explorer to the folder where the
application is located. This is a shortcut to something
usually useful.

Edit → Log → View Opens the dxwnd.log logfile of the selected application, if
existing. Beware that in order to do so, you should
“associate” the log file extension to your preferred text
editor before.

Edit → Log → Delete Deletes the logfile of the selected application, if existing.

Help → About Shows the program version and references the
development team (currently SFB7 whoever this might be,
and GHO that is myself): see below.

View → Status From v2.1.78 on, this command shows a status window
with informations about DxWnd and the hooked program.

DxWnd in the System Tray
Once you move DxWnd in the system tray and until the program is terminated, an icon will be
visible in the system tray. Right-clicking on the icon, you get a subset of the DxWnd commands,
plus the Show command that shows the DxWnd window again. The Show command is the menu
default, so you can activate it also by double-clicking on the DxWnd tray icon.

READY state: DxWnd is ready to hook a program

IDLE state: DxWnd is running, but will not affect any program

RUNNING state: DxWnd is currently operating on a program

The configuration panel
Through the Add or Modify command, this panel will be shown:

These are the settings:

Name The user defined program name, to allow you to label
your application with an evocative naming, possibly
including qualifiers, versioning etc.
If unset, DxWnd will insert here the task filename.

Path The pathname of the task to be activated / hooked.

Hooked Module A field in search for a purpose: since the last
improvements in the call hooking, this is no longer
required for telling extra dll to load, but plans are to use it
for custom implementations of non standard libraries, like
opengl custom releases.

DirectX Version Hook Sets the basic intervention strategy: depending on the
game technology, a different hooking technique should be
adopted. Automatic tries to find it by itself, but it doesn't
always succeed! OpenGL handling will require an
afterthought.

Emulation Defines the basic surface emulation strategy: either
"None" (the program controls the desktop color depth),
"Primary Buffer" (same as 'none', but blit operations are
made against a memory surface and then transferred to the
real primary surface – this handles the otherwise known
pich-bug problem) or "Primary Surface" (the virtual
primary has a different color depth of the real primary, and
DxWnd takes care of the color transformation internally:
slower but no screen mode changes!).

Trace In case of troubles and for debugging purposes you may
ask DxWnd to trace the operations on a logfile, dxwnd.log
that is opened in the game activation directory. You should
turn these options OFF to play, and ON to send reports for
a not working game to me. See notes below about the
options meaning.

DirectInput Initial Coord. and relative X, Y range: DirectInput hook settings about the cursor handling. By

default, all set to 0.

Surface handling These are a set of different tunable options referred to the
video surface handling that will be explained later on in
this manual

Cursor handling These are a set of different tunable options referred to the
the mouse handling that will be explained later on in this
manual

Window handling Some options about how to handle the main window and
the child windows (if any)

Generic These are a set of different tunable options referred to
anything but the screen surface or the mouse that will be
explained later on in this manual

Cancel button Exits the form without saving any change (what else?)

OK button Saves all changes and exits the form (what else?)

Emulation settings (very short description):

None The program blits directly on top of the actual primary
surface, that is simply moved and resized (and clipped) in
order to be confined within a window.

Primary Buffer The former “Pitch Bug Fix” flag, entirely reimplemented
with a different technique. The pitch bug is a well known
problem existing in old games that didn't consider the
Pitch information returtned by the directdraw interface,
then working correctly only when the scan lines were
contiguous in memory. This is the case when you use
either an old video card, or a OFFSCREEN memory
surface, hence the trick: instead of blitting directly on
primary video surface, the flag makes the program use a
virtual primary surface then correctly blitted on video.

Primary Surface When set, let the program work on fake primary surfaces.
This allow to let the program use paletized and low color
depth surfaces (e.g. 8bpp or 16bpp) while it uses an actual
32bpp surface as most desktops are currently set. This
basically eliminates annoying screen color changes, but as
a drawback is much more CPU consuming and often
doesn't cope with 3D accelerated games.

Surface handling settings (very short description):

Map GDI HDC to Primary DC Some games (the older, usually) mix GDI and DirectDraw
screen handling. By default, DxWnd simply tries to
associate the GDI desktop device contect to the window
device context, making the game run in its window, but
often loosing stretching capabilities and so on. This option
set to ON make DxWnd try to associate the desktop
device context to the DirectDraw primary surface device
context, of course when one is available yet! Don't worry
about this: most games don't even touch GDI, and this
option is useless in these cases.

Fix TextOut Placement Fixes the text placement of those games that uses GDI
TextOut call to write text on screen without compensating
for window frame offsets

Handle DC Provides the program with an emulated GDI surface
where it can write, and whose graphic is reverted back to
the DirectDraw surfaces. It's necessary to see text in Age

of Empires I & II, but it's a most CPU consuming option.
You'd need a powerful CPU.

Auto primary surface refresh Some badly programmed games (namely the "Cossaks"
series) don't follow the specification to blit changes on
screen, they just get the primary surface memory address
and keep writing there. The option forces a periodic
blitting of the primary surface on screen even if the game
doesn't request it. You want a second example? It has not
been easy to find, but "Crush! Deluxe" suffers the same
problem.

Use 16BPP RGB565 encoding By default, DxWnd emulates 16BPP color with RGB555
encoding. The option forces RGB565. Thi option, of
course, impacts the video only in emulation mode and for
16BPP color depth.

VIDEO → SYSTEM Surface on fail When this option is set and a CreateSurface fails because
of video memory shortage, DxWnd backs this up by
creating the surface on memory. Oddly enough, some
games expect to notice this by themselves and work
correctly only when the option is NOT set.

Suppress DX common errors Some games running in windowed mode generate
sporadic errors that wouldn't prevent the game to work,
but terminate the application. This option makes directx
methods return OK condition in such common cases.

Remap GDI Client Rect Very powerful to manage the desperate cases with crazy
mouse behaviour: it makes the program believe that its
client rect area (see GetClientRect and GetWinRect APIs)
is always at the top left corner of the screen.

Make Backbuf attachable Alters the size specification of the created backbuffer so
that it copes with the actual primary surface, so that it may
be attachable to a ZBUFFER surface. It makes “Dave
Mirra Freestyle BMX” playable.

Blit from Backbuffer Some games (the Sims, the only one so far....) read
graphic data from the primary surface. When the game
runs windowed, the approximation introduced in a scaled
window brings cumulative error that appear as a
progressive "smearing" effect. In this case, it might be
better to read the data from the backbuffer surface that is
not scaled, even if in such a way you get other troubles
when scrolling (see it by yourself...). The only reasonable
alternative: write game code in a better way, in my
opinion!

Suppress clipping DxWnd sets clipping on the primary surface. If the game
does it as way, there might be interferences. As a matter of
fact, setting this flag is the only way to make "Pax Imperia
Eminent Domain" working correctly.

Disable setting gamma ramp Some games set the hardware gamma ramp feature,
assuming that no one else has control of the desktop
surface. In windowed mode, this will interfere with the
luminosity of the whole screen with a possibly annoying
effect (Jedi Outcast!). This flag disables the
SetGammaRamp API, preserving the luminosity at the
price of having the game maybe a little too dark.

Cursor handling settings (very short description):

Hide cursor Forces hiding the hardware cursor.

Correct mouse position Compensate for X,Y mouse coordinates when the window

is moved or resized. It should be typically set for most
games.

Force cursor clipping Set hardware cursor clipping within the window's region.
It greately improves the game playability in some cases
(namely, the Dungeon Keeper series)

Keep cursor within window Avoid moving the cursor outside the window area. Doing
so was used as “Cursor OFF” directive in some games.

Keep cursor fixed Inhibits the SetCursorPos() API: in some cases, it affects
the program's behaviour (e.g. “Necrodrome”).

Intercept GDI cursor clipping experimental

Message processing Most programs get X,Y mouse coordinates from the
mouse messages or from the specific API. One tricky way
to get the same info, though, is to listen from the windows
message queue using PeekMessag / GetMessage, and
retrieve the X,Y coordinates from ANY received message
in the pt field. Checking this box make DxWnd to fix the
X,Y coordinates on this uncommon situation as well (see
“Uprising”).

Window handling:

Fix Window Frame Style Initializes the game window with a title bar and resizeable
borders.

Prevent Win Maximize Some modern games don't actually go in fullscreen mode,
but just make the window occupy the whole screen. The
option intercepts Windows messages and user32 calls to
avoid changing the window position and size to make it a
full-screen window.

Lock win coordinates Intercepts messages and calls that the program makes to
himself to chenge its own window coordinates. In this
way, though, the game window becomes fixed in position
and size.

Lock win style Intercepts messages and calls that the program makes to
himself to chenge its own windowstyle.

Hook CHILD Windows Extends the DxWnd custom message processing to child
windows.

Recover screen mode Sets the screen mode to registry default settings. In
general, DxWnd intercepts any attempt to change display
settings and prevents unwanted operations, but still some
programs have display settings instructions before DxWnd
could possibly intercept them (e.g. before the window is
created and the windows hook is invoked), so that
chaanging the display settings right after is the only
possible solution. Try this when other options don't work.

Refresh on win resize Any decently written windows application should take
care of refreshing the screen primary surface when
resized, and most fullscreen games do it. Some don't (they
were not suppoed to ever be resized, actually). This flag is
to force a refresh (useful for “Uprising”).

Simulate 8BPP desktop Some games pretends you switch the video mode to 8BPP
before you activate them, making it useless the 8BPP
emulated mode. This flag just let the program believe that
the desktop setting is in 8BPP mode already.

Simulate 16BPP desktop Same as above, but declaring a 16BPP setting. These two
flags should not be set together.

Fix Parent Window Typically, a game is started with an invisible program
window, and then created a separate and child window for
handling the graphic. Some games don't use the child
window, but they rather use the parent one. In this case,
the parent window becomes visible, then needs to be
properly resized. It's experimental, for now, but seems to
be able to manage successfully several tough games:
Solaris, SleepWalker, Sid Meier's Sim Golf, the Worms
serie....

Modal Style When "Fix Window Frame Style" is set, a borderless and
titleless modal style is chosen instead of the default one.

Keep aspect ratio When the window is resized, the aspect ratio set by the
window initial size is preserved (by default the 4:3 aspect
ratio such as 800x600).

Force win resize Experimental (and not working very well so far): should
force the processing of window resizing messages so that
the window can be resized by dragging borders.

Generic settings (very short description):

DirentInput hooking Hooks DirectInput calls. Untested, so far.

Do not notify on task switch Inhibits the task switch notification message that may hurt
some games not designed to handle it properly

Optimize CPU load Limits the framerate saving CPU time

Slow down Interoduces some extra delay for old games that are not
designed properly. Experimental.

Intercept Alt-F4 key Intercepts the Alt-F4 key in the message processing loop
to immediately terminate the program, avoiding any
programmed exit procedure (out-tro, savegame warnings,
ads...). Of course, IF the game is doing the message
processing loop!

Handle exceptions Intercepts some exceptions that have a reasonable
workaround to fix them: so far, it works greately on some
older version of Sonic-R (affected by a divide by zero
exception) and Resident Evil (affected by a illegal
instruction). In both cases, the offending instruction is
eliminated from the assembly and the games work very
well. In some cases, though, the fix doesn't prevent the
game to show an exception pop-up dialogue.

Limit available resources Unimplemented so far: this flag is meant to alter the result
of system query API that may cause some short integer
overflow when too many resources are available and the
game interprets it as insufficient ones: for instance, too
much space available on disk, too much RAM or video
memory and so forth.

Window initial position & size (very short description):

X, Y, W, H Obviously, these are the X, Y coordinates of the initial
client area placement and its Width and Heigth. Because
of the window border and titlebar, the window X, Y
placement will be moved a little to the left and above, and
its size will be a little grater. Whenever the X,Y
coordinates are set to zero, a compensation is made to
avoid that the window is pushed outside the screen. Most
games can be easily moved and stretched on the desktop,

but a few don't support this, so that setting initial proper
coordinates is the only way to have the game running
where you like.

Trace options (very short description):

Enable Trace This works as a global flag that enables/disables all
subsequent traces.
If unchecked, no output is written.
If checked, in output there are the error messages, plus the
specific messages related to other flags (see below)

ddraw Proxy ** BEWARE **
Checking this option makes DxWnd hook a full set of
DirectDraw APIs and COM methods proxy routines that
are just meant to trace everything on disk, in the
dxwnd.log file, when the “Operation Log” option is
checked.
Doing so, the normal DxWnd behaviour is inhibited, the
game should run in full screen mode as originally planned,
and a operation log for debugging purposes should be
available.

Assert Dialog Enables the generation of a dialogue message box to warn
you about severe errors that prevent the correct behaviour
of the program and shouldn't go unnoticed.

DxWnd Enables the operation logging of all significant events that
DxWnd performs to bring the fullscreen program in
windowed mode.

Win Events Enables logging of all Window messages intercepted in
the application's queues, together with events that are
generated or processed internally by the Peek/GetMessage
APIs.

DirectX Enables extended logging of all DirectX operations, no
matter whether they are related to fullscreen / windowed
mode or not.

Cursor / Mouse Enables extended logging of all cursor or mouse related
operations.
** BEWARE ** some old games don't mind the
possibility of concurrent use and perform mouse/cursor
operations in close loops, so that this type of log can
quickly grow quite big in size. In this case, consider the
possibility to slow down the program by using the “Slow
Down” flag.

Import Table Enables extended logging of the Import Table as seen by
the DxWnd program.
This can be quite useful to analyse and troubleshoot
uncommon executables (e.g. when copy protections are
applied).

Debug Writes some more detailed information for diagnostic
purposes.

DxWnd Status
The DxWnd status shows the following information, refreshing them periodically each one second:

DxWnd version: in the picture, the current one: 2.01.78

Hook status: either IDLE, READY or RUNNING (see tray icons)

when running:

Running: the task name (see the configuration panel)

Screen = (width x height) colordepth, as seen by the task

FullScreen = Yes/No depending whether the task has set the cooperative level to EXCLUSIVE or not

DX Version = version of the DirectDraw / Direcr3D interface currently in use (namely, the one used to create the
primary surface).

Special keys
DxWnd injects in the controlled application some special keys that might be useful:

Alt-F12 When the “Force cursor clipping” option is ON, this key toggles the clipping region ON
and OFF so that you can exit the game area and control other tasks or move/resize your
game window.

Alt-F11 Forces a surface repaint. Some old games didn't even consider the possibility of a task
overriding the game area, so they don't repaint when they should. I know this sounds a
little “technicality”, but if your game screen gets dirty, try this key to fix it.

Alt-F10 Toggles logging ON/OFF. Since painting operations can be quite verbose, toggling the log
can be a useful trick to get information about a specific program's activity without having
to browse tons of log lines.

Alt-F4 This key is the well known quit command for any task. If the application doesn't react
quickly enough to your command, you could set the “Intercept Alt-F4 key” option to
cause DxWnd to immediately quit the program.

	What is DxWnd?
	Why DxWnd?
	How does DxWnd work?
	The command line arguments
	The Application GUI
	DxWnd in the System Tray
	The configuration panel
	DxWnd Status
	Special keys

